
ASTER: Fixing the Android TEE Ecosystem with Arm CCA

Mark Kuhne Supraja Sridhara Andrin Bertschi Nicolas Dutly Srdjan Capkun Shweta Shinde
ETH Zurich

Abstract—The Android ecosystem relies on either TrustZone
(e.g., OP-TEE, QTEE, Trusty) or trusted hypervisors (pKVM,
Gunyah) to isolate security-sensitive services from malicious
apps and Android bugs. TrustZone allows any secure world
code to access the normal world that runs Android. Similarly,
a trusted hypervisor has full access to Android running in
one VM and security services in other VMs. In this paper,
we motivate the need for mutual isolation, wherein Android,
hypervisors, and the secure world are isolated from each
other. Then, we propose a sandboxed service abstraction,
such that a sandboxed execution cannot access any other
sandbox, Android, hypervisor, or secure world memory. We
present ASTER which achieves these goals while ensuring that
sandboxed execution can still communicate with Android to
get inputs and provide outputs securely. Our main insight is
to leverage the hardware isolation offered by Arm Confidential
Computing Architecture (CCA). However, since CCA does
not satisfy our sandboxing and mutual isolation requirements,
ASTER repurposes its hardware enforcement to meet its goals
while addressing challenges such as secure interfaces, virtio,
and protection against interrupts. We implement ASTER to
demonstrate its feasibility and assess its compatibility. We take
three case studies, including one currently deployed on Android
phones and insufficiently secured using a trusted hypervisor,
to demonstrate that they can be protected by ASTER.

1. Introduction

Android-based mobile phones consistently own more
than 70% market share [1]. From its inception, Android has
been conscious of ensuring security-by-design, evident from
components that are integral parts of its architecture (e.g.,
permission system, verified boot) [2]. Android’s main goal
is to protect itself as well as benign apps from potentially
malicious apps that the user may install. Like any other
software that has complexity, large codebase size, and uses
memory unsafe languages, Android has been subject to
several critical bugs. A malicious application can exploit
these bugs to not only attack other applications, but also to
subvert Android’s protections. This poses a severe risk to
user’s private information and Android itself.

Trusted execution has emerged as a promising solution
to this problem. If the trusted hardware can isolate security-
sensitive services and apps (e.g., OTP, updates, key gener-
ation) from user applications and Android, then an attacker
can no longer exploit bugs to exfiltrate or compromise such
services. Since Arm is the most dominant ISA used for

mobile phones, most phones are shipped with TrustZone-
based trusted execution. Intentionally built for simplicity,
TrustZone offers a secure world that can house services that
need to be protected from apps and Android which run in
their own world called the normal world.

Despite its wide adoption, TrustZone-based solutions—
of which there are plenty even in production phones—suffer
from a crucial pitfall. By design, the secure world has more
privileges than the normal world, meaning any code exe-
cuting in the secure world can access all the normal world
memory, including Android. On its own, this design choice
may not seem alarming. However, over the past decade,
several secure world-bound trusted applications and services
have suffered from buggy implementations [3]. This has
spawned a rich line of research, including trusted OSes and
hypervisors executing in the secure/normal world to stop the
buggy apps from accessing normal world memory. Unfortu-
nately, attackers have found ways to escape this hierarchical
protection by either exploiting bugs in secure world OSes
and hypervisors or design flaws in their implementations or
interfaces. Containing these attacks has been architecturally
challenging, since bugs in the secure world may lead to
a complete compromise of the phone. In fact, instead of
using malicious apps to attack Android, attackers simply
exploit bugs in the secure world to attack Android [4].
Lastly, since the manufacturer controls the secure world,
it is nearly impossible for Android or users to employ any
protection mechanisms in the secure world.

In response to these challenges, Android has moved to
using normal-world virtualization to house its own security
services, in the hopes of abandoning using the secure world
completely [5]. At least with Android’s normal-world hy-
pervisor, referred to as Android Virtualization Framework
(AVF), Google can be assured that its own design and im-
plementations are trustworthy (e.g., Rust based implemen-
tation, small TCB, rigorous testing). AVF also allows users
to launch other hypervisors if needed (e.g., Qualcomm’s
Gunyah instead of Google’s protected KVM). Nonetheless,
the manufacturers can and do continue to deploy potentially
buggy implementations of trusted services and apps in the
secure world. AVF simply cannot stop attacks from such
services squarely because of inherent ISA decisions.

In this paper, we take a measured look at the existing
Android ecosystem and prior works on attacks and defenses.
We identify three main gaps: violation of the principle of
least privilege, lack of sandboxing, and poorly or completely
undefined interfaces. Based on these observations, we define
a new abstraction called Sandboxed Service (SBS) to capture

ar
X

iv
:2

40
7.

16
69

4v
1 

 [
cs

.C
R

] 
 2

3 
Ju

l 2
02

4



security-sensitive services that desire to run in the presence
of untrusted software such as malicious apps, buggy An-
droid, and compromised secure world. Next, SBS cannot
access normal or secure world memory. Lastly, normal and
secure world should not be able to access each other’s
memory. We analyze the complete design space of existing
and potential solutions based on TrustZone to achieve our
goals, only to conclude with an impossibility result.

Next, we turn our attention to Realm Management Ex-
tension (RME), an Arm extension which enables Arm Confi-
dential Computing Architecture (Arm CCA), for a potential
solution [6]. CCA is primarily built for enabling confidential
virtual machines on Arm platforms by supporting 4 worlds,
the existing normal and secure world with the addition
of a realm world for VMs and a root world for security
enforcement. At first glance, it may be tempting to conclude
that the realm world can be easily used to house SBS.
But CCA inherits the TrustZone decision—both secure and
realm world can access normal world. Thus any solution
based on CCA stands to suffer from same challenges as
TrustZone, at least for mobile platforms. But perhaps not
all is lost with CCA. In particular, unlike TrustZone which
has a rigid address space controller, CCA uses the notion
of programmable Granule Protection Tables (GPTs). Specif-
ically, it allows programming each CPU core with its own
GPT. Different GPTs can map the same memory address as
belonging to different worlds. This opens up an opportunity
to enforce view-based spatial isolation—depending on what
code a core is executing (e.g., Android vs SBS), one can use
a GPT that denies or allows access to a physical address.

We present ASTER, a novel design that enables the SBS
abstraction using Arm CCA. First, ASTER uses a two-GPT
design to achieve mutual world-level isolation i.e., normal
and realm worlds cannot access each other. Then, ASTER
completely stops the secure world from accessing the nor-
mal world. Put together ASTER achieves ideal world-level
isolation desired for Android. Next, ASTER ensures that any
compromise within an SBS is contained. We leverage stage-
two page tables and then enforce a strict communication
interface for an SBS to ensure that it cannot escape the
sandbox. Lastly, ASTER addresses several challenges such
as hardware attestation, virtual IO, and compatibility.

We implement ASTER on a simulator, due to lack of
CCA-enabled hardware. Our prototype shows that ASTER
can easily support Android and existing apps in the normal
world. Our minimal changes allow us to integrate ASTER
into Android Virtualization Framework to launch SBSes. We
take existing services that run on Android-spawned VMs and
port them to SBSes running in a two-way sandbox in realm
world. We make the following contributions in this paper:

• We show that existing as well as potential solutions
based on TrustZone are insufficient to achieve mutual
isolation and secure sandbox abstraction (SBS).

• ASTER repurposes Arm CCA GPTs and augments it
with critical sandboxing and interfaces to realize SBS.

• We port 3 cases studies from Android Virtualization
Framework to show ASTER’s reasonable overheads.

2. Motivation

Arm TrustZone divides the system into the normal world
and the secure world. In each of these worlds, the Arm
architecture provides privilege levels known as exception
levels (EL) ranging from EL0 to EL3. EL3 is the most
privileged and is usually where a trusted firmware (TF)
executes and is part of the secure world. On platforms
with virtualization support, the hypervisor operates at EL2,
while the guest kernel and user-mode software run at EL1
and EL0 respectively. On phones, the secure world runs
trusted apps (TAs) which are isolated by a trusted OS,
while the normal world executes Android. TrustZone tags
every memory access with a world bit, which the TrustZone
Address Space Controller (TZASC) uses to filter accesses
to memory. The TZASC is configured by the secure world
and ensures that the normal world cannot access the secure
world. However, in TrustZone, the secure world can access
all normal world memory making it more privileged.
Overprivileged Secure World. Many previous works have
abused the privileges of the secure world to compromise
the security of TrustZone-enabled devices. These attacks
depend on two main observations. First, the TAs running in
the secure world have unrestricted access to normal world
memory; this level of privilege of the TAs is functionally
unnecessary. Second, TAs have been known to have a wide-
array of implementation bugs (e.g., classic input validation
errors leading to buffer overflows, bad interface sanitiza-
tion) [3], [7]. Put together, these privileged and buggy TAs
have opened a large attack surface which an unprivileged
Android app can exploit. For example, Qualcomm’s Trust-
Zone implementation exposes a memory-mapping interface
that allows a TA to map all normal world memory into its
address space [3]. So, attackers in the normal world (e.g.,
through attacker-controlled Android apps) who compromise
a buggy TA can gain full access to privileged Android
services and kernel to compromise its security (Fig. 3(a)).
Buggy Interface Definitions and Shared Memory. Other
works show more subtle attacks that use bugs in shared
memory implementations of TAs and exploit the fact that
the secure world is overprivileged to gain arbitrary read
and write to normal-world memory [3], [4]. For example,
Boomerang introduces a class of vulnerabilities that allow
malicious unprivileged Android apps to read and write to
any normal world memory by exploiting shared buffers with
the TA [4]. Concretely, a malicious Android application
passes a pointer to memory it cannot directly access (e.g.,
Android kernel memory, memory of other applications in the
normal world) through the shared buffer. The privileged TA
successfully dereferences this pointer and passes the results
back to the malicious application. TAs can choose to either
use standard interfaces (e.g., Global Platform) or introduce
their own interfaces [3], [8]. In either case, these interfaces
are prone to developer bugs. So, an attacker in the normal
world can exploit these interface bugs in a privileged secure
world to compromise device security.
Lack of Hardware-Based Attestation. Cerdeira et al.
present attacks that arise from the absence of hardware-

2



< v7-A

s1
OS

EL0
EL1

s2
OS

Android
OS

s3 s4
T. OS

> v7-A

h/w changes

> v8.4-A(a) (b) (c)no virt. normal world virt. secure world virt.

s1
OS

s2
OS

Android
OS

s3 s4
T. OS

EL0
EL1

Trusted Hyp.EL2

Android
OS

EL0
EL1
EL2 Untrusted Hyp.

s2
OS

Trusted Hyp.
OS
s1

Figure 1. Security in TrustZone. Blue: Normal world Orange: secure world. s1, s2 are sandboxes. s3, s4 are secure world TAs (a) no virtualization support
(b) virtualization support in the normal world (c) virtualization support in the secure world

based attestation primitives in TrustZone [3]. In the absence
of hardware-based attestation, software executing in the
secure world creates attestation reports for local and remote
attestation. If an attacker compromises this software in the
secure world using the attacks discussed above, then these
attestation primitives are no longer reliable as the attacker
can create fake attestation reports. As a direct consequence
of this, validating the version of TAs is unreliable and attack-
ers can downgrade them to known vulnerable versions even
if they are patched [3], [9]. Therefore, to ensure security, the
system must support hardware-based attestation primitives.
Insecure TA Implementations. Cerdeira et al. discuss sev-
eral attacks that stem from bugs in the trusted OS (e.g., non-
standard, expressive, and buggy system call interfaces) and
bugs in TAs [3]. These attacks rely on bad configurations
(e.g., debugging channels left open, lack of ASLR) and
implementation bugs where classic security practices (e.g.,
stack canaries, guard pages) are omitted, or concurrency is
incorrectly handled (e.g., race conditions in TAs). As an
ecosystem, we cannot control the security that individual
developers consider when building their TAs. Currently, the
intra-world isolation between the TAs is performed by a
trusted OS in the secure world. This trusted OS has a large
expressive interface that it exposes to the TAs and is shown
to have bugs [3]. The trusted OS performs unsafe operations
(e.g., directly access the service’s memory, map shared
libraries into several TAs at the same time) which attackers
can abuse to break the intra-world isolation. Consequently,
a single buggy TA can put all other TAs in the secure
world at risk of being compromised (e.g., leaking keys in
the secure world) (Fig. 3(a)). Further, because the secure
world is more privileged, attackers can use the buggy TA to
escalate privilege and break device security.
Can TrustZone Platforms Solve These Problems? Previ-
ous works have explored different approaches to solve the
security issues in TrustZone. Several works have proposed
designs that build sandboxes that contain the effects of
buggy TAs. Before Arm introduced virtualization support,
previous works proposed designs that change the hardware
to ensure that the sandboxes are isolated from each other
in the normal world (Fig. 1(a)) [10]. Other works propose
building sandboxes in the secure world, either by using a
trusted hypervisor in secure world EL1 or by using special
hardware on some TrustZone platforms [11], [12]. Then,
Armv7-A introduced virtualization support in the normal
world. On Armv7-A, works explore designs which sand-
box TAs in the normal world using a trusted hypervisor
(Fig. 1(b)) [13]. Android has recently adopted this approach

and introduced a trusted hypervisor that executes in the nor-
mal world and creates sandboxes called protected VMs [5],
[14]. Later, Armv8.4-A introduced virtualization support in
the secure world. Using this, previous works build designs
that employ a trusted hypervisor to create sandboxes in the
secure world (Fig. 1(c)) [15], [16], [17].

While these approaches create sandboxes for the TAs,
they do not consider enforcing a notion of least privilege
in the secure world i.e., the secure world should only
have selective access to the memory it needs, instead of
an access to the entire normal world by default. Without
such a notion, while the sandboxes isolate the TAs from
each other using translation tables managed by the secure
world (OS or hypervisor), attackers can still exploit their
bugs to access the normal world and compromise device
security (Fig. 3(b)). With just TrustZone, it is not possible
to implement a policy of least privilege for the secure world
as the TZASC that performs the memory access control is
always configured by the secure world [18].

3. Problem Formulation

Section 2 highlights the need for strong isolation be-
tween the normal and secure worlds and calls for introducing
a notion of least privilege for the secure world. If we ensure
strong mutual isolation between the TAs and Android, and
limit the memory accessible to the TAs, this eliminates the
attacks that exploit bugs in the TAs to compromise the
normal world. For example, the attacks in Section 2 that
use TAs to map all normal world memory or de-reference
pointers to normal world memory will be thwarted.

However, just de-privileging the TAs and ensuring mu-
tual isolation between the normal and secure worlds is
not sufficient. Even if the compromised TAs cannot access
normal world memory, attackers can still use them to mount
attacks on other TAs on the trusted OS. To prevent such
cross TA attacks, we need to ensure that the TAs are further
sandboxed. Sandboxing TAs would ensure that even if an
attacker compromises a TA, its effects are contained to
that service. We refer to such sandboxed TAs as sandboxed
services (SBSes). A sandboxed service is any trusted com-
putation that is used by normal world Android apps. SBSes
can be bare-metal binaries, binaries with thin library OSes,
or full VMs.

Mutual isolation and sandboxing ensure that the bugs
in the SBSes are contained to their sandbox. From our
analysis in Section 2, we see that we can improve the
security of SBSes by narrowing the interfaces they use.

3



NormalRealm Secure

Realm
VM

RMM Hyp.

Android
Trusted 
service

Trusted Firmware

Granule Protection Check

EL0
EL1

EL2

EL3

H/W

Root
PA PAS

… …

Granule Protection 
Table

Rt Rl N S

Rt ✓ ✗ ✗ ✗

Rl ✓ ✓ ✗ ✗

N ✓ ✓ ✓ ✓

S ✓ ✗ ✗ ✓

Full ✓ ✓ ✓ ✓

None ✗ ✗ ✗ ✗sec_state

sec_state

P
A
S

CCA trusted software

Figure 2. Arm CCA architecture with CCA’s trusted software with shaded
background. Each core has a Granule Protection Check (GPC) which is
programmed with a Granule Protection Table (GPT). Each core also has
a sec state register which indicates which world the core executes in :
Root (Rt), Realm (Rl), Normal (N), or Secure (S). The GPT maps physical
address to one of the six Physical Address Space (PAS) values. For each
memory access, the GPC looks up the GPT and compares the PAS of the
physical address to the value in the sec state register.

For example, ensuring that shared memory between the
SBSes and normal world is non-executable would stop
attacks where an attacker executes malicious code from this
interface in the SBS. As shown by previous works, we can
reduce the interface attack surface by introducing global
settings for interface security (e.g., non-executable shared
memory) [19]. Further, by using standard interfaces we can
use a rich ecosystem of interface testing and validation tools
(e.g., fuzzers, sanitizers) [20], [21], [22].

Finally, SBSes should be deployed on a platform that
supports hardware-based local and remote attestation prim-
itives that cannot be compromised by a software adver-
sary. Using these primitives, trusted software can validate
(e.g., versions, signatures) the SBSes before deploying them
and remote verifiers can check attestation reports before
transferring secrets to the SBSes (e.g., code for trusted
compilation). In summary, to better protect the applications
and services while retaining functionality, mobile platforms
need to achieve the following security primitives:
Ssand: Sandboxing. During the SBSes execution, any ef-
fects of buggy SBSes are contained within the sandbox.
Siso: Mutual Isolation. The SBSes, Android, and secure
world should be mutually isolated by the hardware.
Sint: Secure Interfaces. A SBS should use secure interfaces
to communicate with Android and other SBSes.
Satt: Attestation. All SBSes should be attested before
launch using hardware-based attestation.

4. Challenges in Using Arm CCA

We aim to design a platform that can be used by
Android applications to deploy SBSes while ensuring our
security primitives. We investigate if Arm CCA provides
the mechanisms to deploy SBSes on Android.

4.1. Background: Arm CCA

Arm Confidential Computing Architecture (CCA) ex-
tends Arm ISA with Realm Management Extensions (RME).
Worlds in Arm CCA. It introduces 2 new worlds—realm

and root (Fig. 2). With RME enabled, computation can
execute in either normal, realm, root, or secure worlds. Fig. 2
shows CCA’s physical address space (PAS) access control
based on the world of the software. Notably, all computation
in the realm world is inaccessible to the normal world. The
realm and secure worlds cannot access each other and the
root world is inaccessible to any other worlds. Even in CCA
the realm and secure worlds can access the normal world,
thus inheriting TrustZone’s overprivilege problems.
Granules. CCA uses new hardware components called
Granule Protection Checks (GPCs) on each core, where
a granule is the smallest block of memory that can be
described (e.g., 4KB). The GPCs filter memory accesses
from cores by looking up Granule Protection Tables (GPTs)
which map granules in the physical address space to one of
the 4 worlds. In addition to the four worlds, the GPT can also
indicate whether a physical address is fully accessible or not
accessible to all software (see Fig. 2). The trusted firmware
(TF) executing in the root world programs the GPTs and
ensures world isolation.
Realm Management Monitor (RMM). CCA enables the
creation of VMs in the realm world. The realm VMs are
mutually distrusting and are isolated using the Realm Man-
agement Monitor (RMM). The RMM is trusted software
that executes in the realm world at EL2 and ensures realm
VM isolation using stage-2 translation tables (S2 tables). To
perform this isolation correctly, CCA specification defines
invariants for the RMM. Importantly, one of the RMM’s
invariants ensures that there can be no overlapping mappings
in the realm world i.e., one realm world address is only
mapped to one realm VM or the RMM. The RMM exposes
an interface called the Realm Management Interface (RMI)
to the hypervisor to create and manage realm VMs and a
Realm Service Interface (RSI) to the realm VMs. RMM and
hypervisor invoke the TF via a Secure Monitor Call (SMC).
Realm VM Creation and Attestation. To setup memory
for a realm VM, the hypervisor first delegates memory to the
realm world by using an RMI call. On receiving this request,
the RMM invokes the TF to change the GPT world mapping
for that physical address. Then, the hypervisor invokes RMI
calls to add the delegated pages to the realm VM. For this,
the RMM updates the S2 tables according to its invariants
to allow the realm VM access to the memory. While adding
the memory to the realm VM, the RMM also invokes the
TF to measure the pages using CCA hardware and adds the
measurements to the realm VM’s attestation report. Once all
memory is added to the realm VM, the hypervisor finishes
realm VM creation and boots it. After the realm VM boots,
a remote verifier can request an attestation report from the
realm VM. The realm VM invokes the RMM using RSI
calls to get the report and sends it to the remote verifier.
Realm VM Destruction. To destroy a realm VM, the
hypervisor first stops the realm VM, destroys the S2 table
entries, and then undelegates all realm memory by using
RMI calls. To undelegate memory, the RMM invokes the
TF to update the GPT. According to CCA specifications, all
realm memory is scrubbed before it is undelegated from the
realm world. Once all realm VM memory is undelegated,

4



Android

Normal

Secure

s1

(a)

s2

Android

Normal

Secure

s2

s1

(b)

Android

Realm

Secure
(c)

s1 s2

(d)

s1

s2

Secure

Android

Normal Realm

(f)

s1

s2

Secure

Android

Normal Realm

Android

Normal

Secure

s1

(e)

s2

Figure 3. Isolation in different settings where S1 and S2 are two TAs such that: (a) Android executes in the normal-world and S1, S2 in the secure world.
(b) Android and S1 are mutually isolated in the normal world. S2 is still overprivileged and can attack Android and S1. (c) Solution 1: move Android
to realm world. (d) Solution 2: execute SBSes in the normal world (e) Solution 3: isolate SBSes in the secure world from Android using two-GPTs (f)
ASTER: executes SBSes in the realm world and ensures mutual isolation between the worlds.

the realm VM is effectively destroyed.
Runtime Memory Isolation. The GPCs filter every memory
accesses from cores during runtime. To provide the GPC
with the world of the core accessing the memory, the TF
programs a per-core register (sec state) with the correct
world on context switches (Fig. 2). To filter the memory
accesses, the GPCs use this register and match it against
the world of the physical address from the GPT. To speed
up accesses to the GPT, every GPC maintains a GPC TLB
where it caches GPT mappings. So, when the trusted mon-
itor updates the GPT, it executes an instruction to flush all
GPC TLBs as stated in the CCA specifications.

4.2. Threat Model

We assume a threat model where all software that exe-
cutes in the normal world including Android and normal
world hypervisor is untrusted. Similarly, we consider all
software that executes in the secure world as untrusted. We
deem the Arm CCA hardware as trusted and CCA’s trusted
software (RMM and TF) to be implemented according to the
specifications. Further, we assume mutual distrust between
the SBSes. If an attacker compromises a sandbox then we
cannot offer any more protections for it. Instead, we ensure
that the compromise is limited to the sandbox and cannot
affect other sandboxes or trusted software. Protecting against
side-channels and microarchitectural attacks is orthogonal to
this work and we consider it out of scope.

4.3. Potential Solutions

We explore different solutions using Arm CCA to
achieve the security primitives and highlight the challenges.

4.3.1. Solution 1: Execute Android in Realm World.
Arm CCA introduces a realm world where the normal world
hypervisor can natively deploy confidential VMs (Fig. 2).
Further, any computation in the realm world is inaccessible
to the normal and secure world. We can leverage this new
architecture to de-privilege the TAs. At first glance, execut-
ing Android in the realm world while the TAs execute in
the secure world (Fig. 3(c)) seems like an obvious solution.

With CCA, the secure world cannot access the realm world
and vice versa. So, this design would ensure the mutual
isolation primitive Siso. Next, CCA specification delegates
all resource management and scheduling tasks to a normal
world hypervisor. Currently, the hypervisor is implemented
in the Android kernel and is tightly coupled with it. So,
to execute Android in the realm world, we would need to
decouple the hypervisor from the Android kernel to execute
separately in the normal world. Now, if we execute a part of
Android (the hypervisor) in the normal world, it would no
longer be fully isolated from the secure world breaking Siso.

This design still executes TAs in the secure world
(Fig. 3(c)) where we should sandbox them to form SBSes
and ensure Ssand. Several previous works have proposed
solutions that sandbox the TAs in the secure world (Fig. 1)
which we can use to ensure Ssand. However, because these
solutions do not consider the problem of secure inter-
faces we will need to carefully consider the interfaces and
harden them to ensure Sint. Arm has announced support for
TrustZone’s secure world using CCA hardware [23]. While
CCA supports hardware-based attestation measurements, it
only defines these primitives for realm VMs and there is
no specification for secure world attestation. Therefore, to
ensure Satt for this design, we need to define new CCA
interfaces to support hardware-based attestation primitives
for SBSes in the secure world. We conclude that the changes
we need to make to Android, CCA specification, and TAs
are invasive. And even with these drawbacks, it still cannot
guarantee our desired security primitives.

4.3.2. Solution 2: Execute SBSes in Realm World. CCA
defines primitives for the realm VMs that ensure sandboxing
and attestation. Thus, we now consider a solution that exe-
cutes the SBSes in the realm world while Android executes
in the normal world (Fig. 3(d)). This design achieves the
sandboxing and attestation security primitives by executing
the services in realm VMs. Furthermore, it standardizes the
interface for realm VM and normal world communication
which we can consider to ensure Sint.

However, this approach does not guarantee mutual isola-
tion between the SBSes and Android. Architecturally, CCA
allows the realm world to access all normal world memory.
Therefore, simply moving all SBSes to the realm world will

5



inherit the secure world’s problem stemming from being
over privileged TAs. Concretely, a normal world attacker
can still compromise the new SBSes in the realm world and
use the attacks from Section 2. Further, with this design
the secure world continues to execute legacy TAs which an
attacker in the normal world can compromise. Therefore,
this design does not mitigate the attacks that stem from the
lack of least privilege notion in the realm or secure worlds.
Despite this limitation, this solution is still a good first step
towards ensuring our security primitives using Arm CCA.

4.3.3. Solution 3: SBSes in Secure World Isolated from
Normal World. The main problem with Solution 2 is that it
does not solve the problem of privileged SBSes in the secure
and realm worlds. Although CCA isolates realm and secure
worlds, isolating normal world from malicious privileged
services (in the realm and secure worlds) to ensure Siso

requires further investigation.
Use CCA to De-privilege Realm and Secure World. To
ensure mutual isolation, we need to create two different
spatial views of memory: one that allows access to normal
world memory (for Android), and one that blocks accesses
to normal world memory (for SBSes in realm or secure
worlds). By default, CCA uses just one view of memory
for all cores by programming them with the same GPT.
To create our different views of memory, we can create 2
different GPTs that allow and disallow access to normal
world memory. Then, we program the cores that execute in
the normal world (Android) with the GPT that allows normal
world memory access. On the other hand, we program
cores that execute in the realm or secure world (SBSes)
with the GPT that blocks normal world memory access.
As a consequence, if software executing in realm or secure
worlds originate accesses to normal world memory, the CPU
raises a Granule Protection Fault (GPF) and the access is
stopped. With this mechanism, we enforce the notion of least
privilege by limiting the memory that SBSes can access in
the normal world, fulfilling Siso.
Solution Description. With this 2 GPT setup, consider a
design where the SBSes execute in the secure world and
Android executes in the normal world (Fig. 3(e)). The 2 GPT
setup ensures that Android is isolated from the secure world
for Siso. However, we still need to ensure the other security
primitives for sandboxing, secure interfaces, and attestation.
Like Solution 1, we can use previous works to ensure
sandboxing in the secure world. But securing interfaces and
hardware based attestation will require overhauling changes
to the CCA specification and the SBSes. On the other hand,
the realm world with its native support for isolated VM
execution, standardized interfaces, and attestation primitives
is therefore a more amenable choice to execute SBSes.

5. ASTER Overview

Following the description of the Arm CCA and analysis
of potential solutions, here we present ASTER, that uses
Arm CCA to enable SBS execution with Android on mobile
platforms. For this, ASTER executes Android in the normal

TABLE 1. INTERFACES THAT ASTER ADDS OR CHANGES IN CCA.
WHERE N: NEW AND E: EXISTING.

Action Interface Components N/E

Memory delegation: update 2 GPTs rmi granule delegate,
rmi granule undelegate

TF E

Memory sharing: update 2 GPTs

invoke smc 2gpt ns share

smc 2gpt ns share
rmi map unprotected, rmi data create,
rmi realm create, rmi rec create,
rmi rec enter

TF

RMM, TF

N

E

Exclusive access: update GPTn

call smc 2gpt ex access
smc 2gpt ex access
rsi ex access

TF
RMM

N
N

MMIO protection: mark MMIO rsi mmio RMM N

world and SBSes in the realm world (Fig. 3(f)) and uses 2
GPTs to ensure mutual isolation between the normal, realm,
and secure worlds. Then, we develop an ecosystem where
Android apps in the normal world create and communicate
with SBSes while ensuring our security primitives. With
ASTER, an SBS can execute a bare-metal binary, a binary
that runs on top of a thin library OS, or a full VM that
executes a Linux kernel with userspace applications. In all
these cases, the SBS should contain a component that can
perform RSI calls to invoke the RMM. To create SBSes,
an Android app invokes Android APIs and sends the code
and data to execute in the SBS along with a manifest.
The manifest contains details of SBS memory regions, and
location and size of shared memory used to create SBS-
Android interfaces. Android invokes the normal world hy-
pervisor with these details to allocate memory and resource
and spawn the SBS.

ASTER leverages the Arm CCA platform to deploy the
SBSes. With CCA, the RMM exposes RMIs to create and
manage VMs in the realm world. In ASTER, Android’s nor-
mal world hypervisor invokes these RMIs to create SBSes in
the realm world. To ensure our security primitives, ASTER
modifies Arm CCA’s VM creation process to: (a) setup the
2 GPTs to ensure mutual isolation, (b) perform local attes-
tation of the SBS and assist with remote attestation using
CCA’s hardware, and (c) create secured shared memory that
Android can use to communicate with the SBS. To destroy
an SBS, ASTER uses CCA’s realm destruction flow. This
ensures that all pages that belong to the realm VM are
undelegated, scrubbed and transferred back to the normal
world. Tab. 1 shows an overview of all the interfaces and
CCA components that ASTER changes.

5.1. Mutual Isolation and Sandboxing

ASTER ensures Ssand for the SBSes by using the
RMM’s realm VM memory invariants. The RMM guaran-
tees that two realm VMs do not have overlapping memory in
the realm world. ASTER uses this guarantee to ensure Ssand

for SBSes (Fig. 4(b)). With this, any bugs in an SBS are
contained to its sandbox and cannot escape to compromise
other SBSes. Next, to ensure mutual isolation between the
SBSes in the realm world and Android in the normal world,
ASTER uses the 2 GPT setup. To create the two spatial
memory views ASTER uses 2 GPTs; GPTn for the normal
world, and GPTrs for the realm and secure worlds. The

6



PASPA

……
PASPA

……

RMM

TF

Hyp.

a1.
a2.

a3.
Siso check if a1.

delegate
(PA) 

S2-tables
PAIPA

……

RMM
PAIPA

…… b1.
add_data 
(S2,IPA,PA)

check no 
overlap 

Ssand
b2.

b3.

Sval TF

S1
RMM

TF

Hyp.
c1.

c3.
Siso

share
(S2,IPA,PA) 

check 
IPA ∈ S2

c4.
Sint

c2.

check if c1.

(a) (b) (c)

PASPA

……
PASPA

……

PAIPA

……
PAIPA

……

delegate(PA) 

Hyp.

measure PA

S2 S1 S2S1 S2

GPTn,GPTrs

Figure 4. Enforcing ASTER primitives during SBS creation. S1 and S2 are SBSes, PA is physical address, IPA is intermediate physical address (a) a1.
Hypervisor delegates PA to realm; a2. RMM calls TF to delegate PA to realm; a3. TF checks and then updates GPT to ensure Siso. (b) b1. Hypervisor
adds data to SBS S2; b2. RMM checks that the PA is not assigned to any other SBS for Ssand, then updates S2-tables; b3. then calls the TF to measure
the granule Satt. (c) c1. Hypervisor calls create shared memory for SBS; c2. RMM checks and invokes the TF to update GPT; c3. TF checks then updates
GPT for Siso and then returns to the RMM; c4: RMM updates the S2-tables to enforce Sint.

Root RL N S

Root RL NA S

t0: At Boot
Root RL RL N S

Root RL RL NA S

t2: Share
Root RL RL N N S

Root RL RL RL NA S

t3: Undelegate 
Root RL N N N S

Root RL NA RL NA S

PAshare 

t1: Delegate PAdel 

GPTn

GPTrs

GPTn

GPTrs

PAdel 

GPTn
GPTrs

GPTn

GPTrs

Figure 5. Changes to the 2 GPTs by the TF from time t0 to t3. Root (in
yellow), Realm (RL in green), Normal (N in blue), Not-accessible (NA in
grey), and Secure (S in orange). t0: at boot TF marks the normal world
memory as not-accessible in GPTrs. t1: to delegate granule PAdel the TF
marks it as realm in both GPTs. t2: to share granule PAshare the TF marks
it as normal in GPTn and realm in GPTrs. t3: to undelegate PAdel the
TF marks it normal in GPTn and not-accessible in GPTrs.

key difference between these GPTs is that GPTrs marks all
normal world memory as not-accessible (Fig. 5(a)). During
runtime, ASTER uses GPTn for all normal world cores that
execute Android and the hypervisor. Similarly, it uses GPTrs

for all cores that execute realm and secure world software.
Creating 2 GPTs. By default, the TF creates a GPT during
boot that is used for all cores. For this, it allocates space in
root memory and configures the GPT to designate memory
in the realm world for the RMM, in the normal world for
Android, and in the secure world for any secure world
hypervisors, OSes, and TAs. ASTER reuses this original
GPT in CCA as GPTn. To create GPTrs, ASTER extends
this boot process in the TF and allocates additional space
in root memory for GPTrs. Then, ASTER marks all normal
world memory in this GPT as not-accessible (see Fig. 5).
Managing 2 GPTs for SBSes. With CCA, when the hy-
pervisor delegates memory to the realm the RMM invokes
the TF to update the GPT to designate the granule to realm
(Fig. 4(a)). Similarly, when the hypervisor undelegates realm
memory to the normal world, the RMM invokes the TF
to update the GPT. ASTER extends this granule delegation
and undelegation flow to maintain the two GPTs for SBSes.
During SBS creation, when the RMM invokes the TF to
delegate a granule to realm, the TF marks the granule as
realm in both GPTn and GPTrs. Once the SBS boots,
it can request more memory from the hypervisor through
the RMM by using RSI calls. In response, the hypervisor

performs RMI calls to delegate memory to the realm before
assigning it to the SBS. As before, for the realm memory
delegate operation, the TF marks the granule as realm in
both the GPTs.

If the SBS relinquishes realm memory or is destroyed,
the RMM invokes the TF to undelegate the realm memory
to the normal world. For this operation, ASTER changes the
TF to mark the granule as normal world in GPTn and not-
accessible in GPTrs (see Fig. 5). CCA specification states
that realm memory is always cleaned before it is undelegated
to the normal world. Therefore, ASTER does not need to
perform any additional operations when relinquishing SBS
memory ensuring that it does not leak.

To ensure that both the realm and normal worlds have
consistent memory views and guarantee hardware-enforced
mutual isolation, the TF checks that both the RMM in the
realm world and the hypervisor in the normal world agree
to the memory delegate or undelegate operation. In CCA,
the hypervisor always originates the delegate or undelegate
requests by using RMI calls that are routed through the TF
(Fig. 4(a)). To ensure consistent views, ASTER changes the
TF to store these RMI parameters before routing them to the
RMM. Then, when the RMM invokes the TF to delegate or
undelegate memory, the TF first checks that the hypervisor
had requested it, and only then performs the operation.

5.2. Interfaces

Our security primitives which ensure mutual isolation
and sandboxing, provide ASTER with a clean abstraction to
investigate interface security. Because the SBSes are mu-
tually isolated from Android, they cannot arbitrarily access
normal world Android apps. Instead, ASTER forces them
to use a shared memory region which can only be created
using the RMM. This gives ASTER an opportunity to use the
RMM to mediate such shared memory setup for communi-
cation interfaces between SBSes and Android applications
enforcing Sint. With ASTER, SBSes use the shared memory
interface to either communicate with Android apps using a
standard RPC interface or use the normal world hypervisor’s
virtual device support (e.g., virtio for block devices and
network). Next, we explain how we build ASTER’s shared

7



memory based interfaces. For this, we draw insights from
several prior works in non-CCA setting [5], [19], [24], [25].

5.2.1. Communications with Android Apps. We build a
secure shared memory region that can be used by SBSes to
communicate with Android.
Setting up Shared Memory. The Android app that requests
SBS creation specifies the size of the shared memory re-
gion. The SBS uses this region to allocate all objects for
communication with Android. ASTER sets up this fixed
shared memory region with the right parameters during SBS
creation. This requirement for a fixed shared memory region
is stricter than the current CCA specification. Currently,
CCA allows realm VMs to dynamically decide which pages
in the realm VM memory are shared with the normal world.
ASTER strengthens this by requiring that all shared memory
be set up in a contiguous space during SBS creation. This
hardens the interface by ensuring that SBS does not uninten-
tionally expose its data to the normal world (e.g., exposing
a full page as shared memory to the hypervisor while only
intending to share a small object in the page).

To create the shared memory region, the hypervisor
invokes an RMI call with the information of the memory
pages to share. Before forwarding this RMI to the RMM,
the TF logs this request in its root memory. Then, to create
the shared memory region, the RMM invokes the TF to
mark the region as normal world in GPTn and realm world
in GPTrs (see Fig. 5). Before performing this operation, the
TF first checks that the hypervisor had invoked the RMI to
share the memory pages (Fig. 4(c)).
Protecting Shared Memory. ASTER hardens the interface
by using the RMM to mark the shared memory region as
non-executable and enable mechanisms for exclusive access
to the SBS. To ensure that the shared memory region is non-
executable, ASTER extends the RMM’s shared memory cre-
ation mechanisms and marks the region as non-executable
in the SBS’s S2 tables.

An SBS can perform SBS-specific interface checks on
the data that it reads or writes to the shared memory region.
Naively performing these checks can leave the SBS vul-
nerable to TOCTOU attacks. For example, an SBS checks
an object in shared memory for bad values (e.g., bounds
checks). Once the check passes, before the SBS can use
the value, the hypervisor changes it mounting a TOCTOU
attack. Therefore, exclusive access to shared memory is
important while performing interface checks to prevent such
TOCTOU attacks. In our setting, we cannot enable this
by default using the RMM, because these interface checks
and when to perform them are linked to the semantics
of the SBSes and the interfaces they use. Instead, ASTER
enables a mechanism that the SBS can use to lock down
shared memory pages for exclusive access. To implement
this exclusive access mechanism, ASTER introduces a new
RSI call. The SBS can invoke this RSI with information
on the pages of shared memory to enable exclusive access
on. On receiving this request, the RMM uses the TF to
mark the requested regions of memory as not-accessible in
GPTn, preventing the normal world software from accessing

it. The SBS can disable the exclusive access by invoking the
RSI again which marks the regions back to normal world
in GPTn using the TF.
Standard Interfaces for Communication. Just a shared
memory region is insufficient to enable expressive com-
munication between Android and the SBSes. Several pre-
vious works have proposed protocols that work over shared
memory (e.g., Android’s Binder RPC for communication
between different processes, Native Client’s RPC). ASTER’s
shared memory abstraction is general enough and SBSes
can use these standard protocols to communicate over it
enforcing Sint. In our implementation, we pick one con-
crete instance of Android’s Binder RPC to show ASTER’s
expressiveness. To use the Binder, the Android app and the
SBS agree on an interface definition (types of commands,
data types of objects sent/received). We observe that this
definition is rich enough to automatically invoke the ex-
clusive access RSI calls when data is sent over the Binder
interface. Therefore, we implement these calls as part of
the SBS in our implementation. Furthermore, this interface
has been extensively used in Android app development
for inter-process communication and for VM communica-
tion [20]. We show that ASTER’s design is compatible with
this standard interface and strongly recommend that SBSes
use it. SBSes that use this interface can benefit from its
mature testing infrastructure (e.g., fuzzers, analysers) further
strengthening SBS security and enforcing Sint.

5.2.2. Virtio Device Support. ASTER supports attaching
selected untrusted virtio devices, which are managed by the
hypervisor, to SBSes. To use virtio devices, SBSes need
to send data to the devices through the untrusted hyper-
visor. For some devices (e.g., keyboard, display) without
cryptographic endpoints, SBSes will need to send this data
in plaintext which will open them up to attacks from the
hypervisor. In ASTER, we observe that SBSes mainly use
virtio for networking and storage in block devices (see Sec-
tion 8.3). These virtio devices can be secured using network
encryption and encrypted storage. For these virtio devices
the hypervisor merely acts as a relaying entity. Even if the
hypervisor changes their data in any way, encryption and
integrity protection will detect such tampering. Therefore,
in ASTER we use local attestation to ensure that, if any,
only virtio devices for networking and block storage can be
attached to an SBS (see Section 5.3).
Allocating Virtio Device Queues. The untrusted hypervisor
manages virtio devices for the SBS. For this, the hypervisor
sets up queues (virtqueues) in the shared memory region
that ASTER creates. The SBS writes into these queues to
send data to the hypervisor to perform device operations
(e.g., send data to the device with DMA). Typically, virtio
implementations assume that the hypervisor can directly
access VM memory. So, the VM writes pointers to objects
in its memory in the virtqueues for the hypervisor to deref-
erence. To allow this functionality, in ASTER we should
mark the memory that holds these objects as shared with
the hypervisor. We see that these objects might not be page
aligned while ASTER shares memory with the hypervisor at

8



page granularity. Therefore, by sharing the object’s memory
we might leak SBS memory to the hypervisor. To prevent
this and enforce Sint, ASTER fixes the shared memory
region during SBS creation. Then, all objects that might
have pointers in the virtqueues should be allocated in this
fixed shared memory region.
MMIO protection. MMIO reads and writes to the virtio
devices are performed by the hypervisor. For an MMIO
write, the hypervisor needs to write the register value to the
device. Similarly, for an MMIO read, the hypervisor should
be able to copy the value from the device into the SBS’s
register. With CCA, the hypervisor cannot directly access
the realm memory to perform these operations. Instead, to
provide this functionality, when the SBS accesses memory-
mapped regions (for MMIO read/write) of the virtio devices,
the hardware generates a data abort that the RMM traps
on. To perform the MMIO operations, the RMM sends data
about the faulting instruction (e.g., register values for MMIO
write) to the hypervisor. Furthermore, for MMIO read, the
RMM copies data from the hypervisor into the SBS register
state. Previous works have shown that such interfaces can be
abused if they are not correctly implemented [26]. Currently,
the RMM checks that the realm VM exited because of a data
abort (i.e., because of a read or write to memory) and only
then processes the MMIO operation. ASTER strengthens
this and ensures Sint by requiring the SBS to explicitly
mark regions of its memory as MMIO regions using a new
interface in the RMM. With this, we extend the RMM to
check if the address that caused the data abort was marked
as an MMIO region by the SBS and only then perform the
MMIO data transfers.

5.2.3. Interrupts. Ahoi attacks abuse the notification in-
terface (e.g., interrupts, exceptions) between trusted and
untrusted software by triggering expressive handlers [26],
[27]. With CCA, the interrupts for the realm VMs are
managed by the hypervisor. Therefore, the hypervisor can
inject interrupts into the SBS at any point during their
execution On Arm, exceptions (e.g., divide-by-zero, data
abort) are injected by trusted hardware and cannot be faked
by the hypervisor. Other interrupts like timer do not typically
have expressive handlers for an attacker to exploit. All that
remains is device originated interrupts, which the RMM
filters by default and hence cannot be abused by attackers
to mount Ahoi attacks [27]. ASTER does need two virtio
devices (block storage and network) that are attached to
SBSes. The attacker can inject interrupts for these devices,
but since ASTER uses encryption and integrity protection,
the victim SBS will detect it (e.g., failed decryption and
integrity checks).

In summary, ASTER uses the RMM to build secure
shared memory and enforces security measures including
fixed shared memory regions, non-executable data, selected
virtio interfaces, and MMIO protection. Besides these,
ASTER enables SBSes to turn on/off exclusive access on
shared memory which allows them to perform SBS-level
semantic checks when sending/receiving data from the un-
trusted hypervisor.

5.3. Attestation and Validation

CCA provides hardware primitives to perform local and
remote attestation for realm VMs. In ASTER, we use these
hardware primitives to enforce Satt.
Local Attestation. In CCA, the hypervisor can use RMI
calls to launch and execute arbitrary VMs. On a mobile
platform, this might not be desirable as the software is
usually checked and validated by Android. Furthermore,
for SBS security, we need mechanisms to ensure that only
selected virtio devices (Section 5.2.2) are attached to the
SBS. SBS validation can be performed by Android before
they are launched, but in our setting, Android is untrusted.
Instead, ASTER uses the RMM to perform local attestation
and enforce validation rules for virtio devices.
Remote Attestation. As explained in Section 4.1, CCA
hardware populates attestation reports for the SBSes when
they are created. This report includes measurements of all
SBS memory and platform software (RMM and TF). A
remote verifier can query this report (see Section 4.1) and
ensure that the SBS is booted correctly on a trustworthy
platform ensuring Satt.

6. Security Analysis

Attacks from Secure World. Compromised TAs in the
secure world can try to access SBSes in the realm world.
But, CCA’s GPC checks prevent the secure world from
accessing realm world memory. The compromised TAs can
try to access shared memory that SBSes setup with the
normal world but CCA hardware stops this as this memory
is marked as realm world in GPTrs.
Attacks from Android and the Hypervisor. Normal world
software (Android apps, VMM, or the hypervisor) can try to
launch SBSes that do not conform to the platform’s valida-
tion rules. Such attempts will be detected and discarded by
ASTER during SBS boot (Satt). Malicious Android apps can
try to launch attacker controlled SBSes to compromise other
SBSes. This attack is stopped by ASTER’s sandboxing prim-
itive (Ssand). They can also try to attack the Android kernel
in the normal world which is stopped by the mutual isolation
primitive (Siso) that ASTER guarantees. When an Android
app requests SBS creation, the hypervisor can create SBSes
with incorrect configurations, devices, or malicious code or
data. However, these bad startup settings will be detected
(Satt) either during the local attestation process or during
remote attestation. The hypervisor can try to mount a split-
view attack where cores see different views of the GPTs
by not synchronizing all cores or trying to update the GPT
simultaneously from different cores. In CCA, the updates
to the GPT are synchronous i.e., the RMM waits for the
TF to return after it makes the request. Before updating the
GPT, the TF always acquires a spinlock ensuring that only
one core can update the GPT at any point in time. Then
before returning to the RMM, the TF always executes an
instruction that flushes the GPC TLBs on all cores forcing
them to refetch the updated GPT entries.

9



Interface Attacks. Normal world software can try to com-
promise SBSes by using ASTER’s shared memory interfaces
or the virtio device queues. ASTER stops attacks where the
attacker injects code into the shared memory region and
executes it in the SBS by ensuring that the shared memory
regions are always non-executable. Further, ASTER stops at-
tacks from normal world software that abuses virtqueues im-
plementations to de-reference arbitrary SBS memory by fix-
ing the shared memory region during SBS creation. Besides
these global mechanisms that ASTER employs, we cannot
control what data is sent over the shared memory channels
and how they are used by the SBSes or the normal world. To
harden the interface further, ASTER enables exclusive access
to the shared memory regions that the SBSes can turn on or
off. This allows SBSes to deploy context-specific interface
hardening rules. Attackers can compromise buggy SBSes
that do not employ security-relevant features (e.g., exclusive
access to shared memory, stack canaries, ASLR). ASTER
cannot completely stop attackers from compromising these
buggy SBSes even if it limits the interfaces available to the
attackers. But, ASTER’s sandboxing and mutual isolation
primitives ensure that these attackers cannot compromise
other SBSes (Ssand) or the normal world software (Siso).

Compromised SBSes. They can try to bypass the Android
permission models to get access to data (e.g., contacts)
or devices (e.g., camera) in the normal world. However,
because ASTER ensures mutual isolation, they cannot di-
rectly access Android memory to bypass permission checks.
Compromised SBSes can try to use their interface with
the Android app to bypass the permission checks, which
Android stops as it imposes the checks on all Android apps.
Compromised SBSes can try to attack other SBSes but are
stopped by ASTER’s sandboxing primitive. They can also try
to escalate privilege to the RMM using the RMM’s interface.
However, with CCA the RMM’s interface with the SBS is
small and strictly regulated, always checks the inputs, copies
only fixed data from the realm VMs, and is deemed secure.
In ASTER, we ensure that the security of the interface by fol-
lowing CCA’s security practices. Compromised SBSes can
try to attack Android in the normal world which is stopped
by Siso, by marking Android memory as inaccessible.

Malicious Devices. The hypervisor can corrupt or tamper
the virtio device data. ASTER only allows block devices
and network devices as virtio devices which we are secured
using disk and network encryption, thus stopping this attack.
Other integrated devices can try to access SBS memory,
but are stopped by CCA because the SMMU’s GPC is
programmed with GPTn by default, which does not allow
these devices access to realm memory.

Physical Attackers. TrustZone, and by extension all prior
works, does not protect against a physical attacker that
can snoop on the DRAM, mainly due to lack of memory
encryption. ASTER can use Arm CCA Memory Encryp-
tion Contexts (MEC) to generate per-SBS identities (MEC
IDs) [28]. So the hardware uses a unique key for each SBS
to encrypt and integrity protects the data before DRAM.

7. Implementation

To implement ASTER we pick Linaro’s CCA stack [29]
with implementations for the RMM (v1.0-eac5) [30], TF
(v2.10) [31], and a Linux kernel (v6.7-rc4) with patches for
CCA [32]. We use Android Open Source Project (AOSP)
v13.0.0 r12 [33] with Android’s patched Linux kernel
(Common kernel v15-6.6) [34].1

7.1. SBSes in the Realm World

ASTER needs to execute a user-space binary and a kernel
as part of the SBS. We consider existing Android services
that can benefit from ASTER’s protections. In particular,
Android enables running protected VMs (pVMs) in the
normal world using a trusted hypervisor (called pKVM) as
part of the new Android Virtualization Framework (AVF).
While a pVM can run any OS and application in the VM,
the Android platform provides a minimal runtime which is
a stripped down version of Android called Microdroid. We
take existing apps that run Microdroid VMs and port them
to run as ASTER’s SBSes. In the VM, Android executes
Microdroid in EL0, an Android kernel in EL1, and uses a
modified uboot as the VM’s bootloader. To build, deploy,
and manage the Microdroid VM, the Android platform uses
a Virtual Machine Monitor called crosvm. We modify the
Android Linux kernel, the bootloader, and crosvm to launch
Microdroid VMs as SBSes in the realm world.
Adding CCA Support to the Android Kernel. To build
ASTER we first need to enlighten Android’s Linux kernel
with CCA support. So we cherry-pick CCA support from
Linaro’s CCA Linux implementation into our Android ker-
nel, which adds 2554 LoC. The patchset allows us to use the
same kernel in the host (i.e., with Android) in the normal
world and as a guest in the realm world. This enlightened
Android kernel when executed in the realm world performs
RSI calls to communicate with the hypervisor through the
RMM. We verify that our changes to the guest kernel are
compatible with Microdroid and boot a VM in the normal
world. This VM executes Microdroid in EL0 with our
modified Android kernel in EL1. This setup also serves as
a baseline to evaluate ASTER against.
Launching SBSes with Android. For ASTER’s SBSes, we
need to create Microdroid VMs in the realm world. To
create the realm VMs, we modify crosvm with 469LoC
to trigger RMI calls. With our changes crosvm invokes
Android kernel’s KVM to perform RMI calls during SBS
creation and management (see Tab. 2 for more details). We
extend Android’s bootloader to correctly boot Microdroid
in the realm VM. For this, we patch the bootloader to
perform RSI calls instead of the hypervisor calls that it
performs (see Tab. 2). In total, we change 543 LoC in the
bootloader. These changes allow us to boot a realm VM
with our patched CCA Android kernel and Microdroid.

1. We refer to this patched Linux kernel as Android kernel.

10



TABLE 2. CHANGES TO CREATE AND BOOT SBSES IN REALM WORLD

Operation Component RMI/RSI call Description

Allocate memory for the VM and transfer it to realm world crosvm rmi granule delegate Delegate a granule to the realm world

Deploy initial Data into Realm crosvm rmi data create Copy Data from NS to Realm memory

Create PA to Realm IPA mappings crosvm/hypervisor rmi rtt create Create Realm Translation table

Establish VM identifier between hypervisor and RMM crosvm rmi realm create Creates a Realm

Create Storage for Realm vCPU data crosvm rmi rec create Creates a Realm Execution Context

Finalize creation of Realm crosvm rmi realm activate Activates a Realm

Execute a Realm crosvm/hypervisor rmi rec enter Enters a REC

Share memory from the host with a Realm crosvm rmi rtt map unprotected Creates a non-protected IPA mapping

Set host memory access permissions for Realm memory uboot/guest kernel rmi rtt set ripas Changing Realm IPA state

Access device memory in unprotected IPA range uboot N/A N/A

Perform exclusive memory access of device memory uboot/guest kernel rsi ex access Turn exclusive page access on or off

Limit MMIO emulation to specific memory regions uboot/guest kernel rsi mmio Change memory affiliation

7.2. Implementing ASTER security primitives.

We modify the RMM and TF for our primitives (Tab. 1).

7.2.1. RMM. We change 304 LoC in the RMM to imple-
ment the security primitives.
Creating and Maintaining Shared Memory Regions. In
CCA, several RMI calls (see Tab. 1) create shared objects
with the normal world during SBS creation. In ASTER’s
RMI handlers for these calls, we first check that these
objects are in pages that are contiguous with any existing
shared memory pages. Then, we invoke a newly introduced
smc 2gpt ns share call to the TF to update the GPTs.
When the TF returns, we update the S2 table entries for the
shared memory pages to be non-executable. Because ASTER
expects the hypervisor to setup a fixed shared memory
region during boot, we disable this shared memory creation
mechanism and the SMC invocation once the SBS boots.
To enable exclusive access to shared memory we introduce
a new RSI call (rsi ex access) that takes as argument a
list of guest physical addresses and a parameter indicating
whether to turn exclusive access on/off for the pages. In the
RSI handler, the RMM first checks that these pages belong
to the SBS that invoked the RSI and that they are shared
pages. Then, to turn the exclusive access on/off on these
pages, the RMM invokes a new smc 2gpt ex access call
to the TF to update the GPTs (see Section 5.2.1).
MMIO Protection. In ASTER, the SBS needs to explicitly
mark pages for MMIO emulation. For this, we implement a
new RSI call (rsi mmio) which takes as input the pages
to mark for MMIO emulation. In response to the RSI,
we change the RMM to store this information in the SBS
context. Then, before performing the MMIO emulation for
an SBS, the RMM first checks that the pages were marked
for MMIO emulation using rsi mmio and only then copies
data to or from the untrusted hypervisor.

7.2.2. TF. We change 610 LoC in the TF to implement
ASTER’s security primitives.

Creating and Maintaining GPTs. We create and populate
the 2 GPTs at platform boot. For the new GPT, we allocate
an additional 2MB memory in the root world. Then, when
the RMM uses the SMC to invoke the TF to delegate,
undelegate, or share realm memory, we have to first check
that the hypervisor requested this operation and then update
the GPTs. To check, we observe that the RMM only invokes
these SMC calls in response to the hypervisor’s RMI calls
which are always routed through the TF. So, we change
the TF to store these RMI parameters from the hypervisor
before forwarding them to the RMM. Then, when the RMM
invokes the TF, we lookup the information to check that the
hypervisor truly invoked the right RMI with the correspond-
ing arguments (addresses to delegate, undelegate, or share).
If the checks pass, we update the GPTs.

We implement a new SMC in the TF for the RMM
to turn exclusive access on/off to shared memory pages
(see Section 5.2.1). Here, we do not need to synchronize
views with the hypervisor as the hypervisor has already
acknowledged this memory is shared with the SBS. Instead,
we check that the requested pages are in the shared state
i.e., normal world in GPTn and realm world in GPTrs and
then update the GPTs. On context switches between the
realm, normal, or secure world we change the TF to program
the gptbr el3 register with the corresponding GPT. After
changing the register, we ensure that the GPC TLBs are
flushed according to CCA specifications.

7.3. Local SBS Attestation

To perform local attestation and to validate the SBS, the
RMM uses a trusted bootloader. ASTER loads the bootloader
into RMM memory during the platform boot process. When
the platform boots, the trusted firmware allocates memory
for the RMM, loads it and starts the RMM boot process.
ASTER extends this and allocates extra memory for the
RMM in the realm and places the bootloader into it. The
trusted firmware always loads the bootloader into a fixed
physical address that the RMM is programmed with. When

11



the platform software (the trusted firmware and RMM) boot,
CCA adds their measurements to a platform attestation
report. With ASTER, the bootloader is a part of the platform
software and is included in CCA’s platform attestation re-
port. CCA includes this platform attestation report in all SBS
reports queried by remote verifiers (see Section 3). Further,
the modularity of our design that separates bootloader from
the RMM ensures that phone manufacturers can update the
bootloader through platform updates to the device.

During SBS creation, the RMM copies the bootloader
into SBS memory and sets it as the entry point for the SBS
boot. Because the bootloader is now a part of the SBS mem-
ory, CCA’s attestation process will add its measurements to
the SBS’s attestation report. This ensures that the bootloader
can be checked by remote verifiers.

When the SBS boots, the bootloader can be configured
to first perform local attestation using CCA’s measurements
for the SBS. ASTER makes a conscious choice to make this
process configurable in the bootloader. Specifically, platform
developers can choose how the local attestation is performed
and the set of measurements that are acceptable. Similarly,
the bootloader can be configured to check for specific
digital signatures and only then boot the SBS. Importantly
for ASTER, the bootloader parses the device trees, finds
all devices attached to the SBS and their configuration,
and checks it to ensure that only allowed virtio devices
are attached. Once the bootloader completes the validation
checks, it boots the SBS.

8. Evaluation

We perform our experiments on an Intel Xeon Gen5
processor, with 32 cores / 64 threads and 184 GB RAM.

8.1. Experiment Platform

Qemu. The Android platform has instructions and a build
target to execute it on the Arm Fixed Virtual Platform
(FVP) [35]. However, this target is not actively maintained
and it is not straightforward to functionally deploy Android
on the FVP. After patching AOSP v13 to build and run
successfully on the FVP, we still needed > 12 hours to
boot Android without any changes. Therefore, the FVP
setup is infeasible to develop ASTER on or perform our
experiments. In contrast, Linaro’s QEMU support for Arm
CCA performs much better and takes ≈ 5 minutes to boot
Android. Therefore, we choose to use QEMU v8.20-rc4 with
support for Arm CCA to prototype ASTER. We can only
obtain number of instructions as performance measurement
from the FVP as cycle-accurate simulation is not possible
for Arm CCA hardware [18], [36], [37]. To get the same
performance metric for our experiments with QEMU, we use
a customized version of QEMU’s insn instruction tracer.
Measurement Setup. We use a setup (Sb) which executes an
unmodified Android in the normal world with an unmodified
CCA platform (RMM and TF). In this setup, we boot a
Microdroid VM in the normal world without any protections
using Android kernel’s KVM as the hypervisor. We use Sb

TABLE 3. HOST AND GUEST BOOT COSTS IN MILLION #INSTRUCTIONS

Stage Sb Sa %Overhead

Host

BL1 0.312 0.316 1.26
BL2 42.891 45.576 6.26
BL31 82.947 82.954 0.01
Kernel 814.797 918.598 12.74

Guest

BL UBoot 1492.771 4057.346 171.80
Kernel 480.307 4889.900 918.08

as our baseline to compare our setup (Sa) against. For Sa,
we execute a CCA platform with ASTER’s changes to the
TF and the RMM. In the normal world, we execute Android
on our modified Linux kernel with CCA patches. Then, we
boot a realm VM as the SBS with ASTER protections. For
both setups we run the VMs with 1 core and 1 GB memory.

8.2. Cost Breakdown

We run our experiments with the 2 setups, Sb and Sa

and report the cost of ASTER’s security.
Platform Boot Costs. We measure the cost of booting the
TF, RMM and Android for our setups (see Tab. 3). We see a
total overhead of 10.4% during boot of Sa. This slowdown
is acceptable as this is a one-time cost (see Tab. 3). This
overhead is because of the extra GPT that the TF creates
and populates during platform boot. Acai uses a 2 GPT setup
for prototyping and measures the overheads for setting up
2 GPTs on a Zynq UltraScale+ MPSoC ZCU102 with an
Arm Cortex-A53 64-bit quad-core processor. ASTER also
needs to setup and populate 2 GPTs and would incur 20.8%
overhead to setup the additional GPT as a one-time cost
during the platform boot (c.f., Acai [37]).
SBS Boot. We measure the costs to boot a VM in both
our setups and report that Sa adds 257.06% overhead. It
is because Sa performs significantly more context switches
than Sb, all of which are routed through the RMM and
TF (Tab. 3). In Tab. 4 we report the creation and runtime
overheads for all the SBSes with Microdroid Apps. The
overheads are because each hypervisor call from the boot-
loader and kernel needs to go through the RMM and the TF.
Although high, this is a one-time setup cost for the SBS.
GPT Updates. We measure the overheads of ASTER’s
additional GPT when pages are delegated by invoking
rmi granule delegate from the hypervisor in our 2 se-
tups. Sa needs 10 additional instructions for each GPT
update [37]. Acai reports an overhead of 0.7% for updating
the additional GPT with their measurements on the Zynq
board, so ASTER would incur similar overheads.

8.3. Case Studies: Android & Protected VM Apps

We demonstrate ASTER’s compatibility with Android
apps and existing pVMs. For this we use two existing

12



TABLE 4. CASE-STUDIES COST BREAKDOWN. NUMBER OF CONTEXT SWITCHES (COLUMNS 2-4), HYPERVISOR-VM CALLS (COLUMNS 5-7), SMC
(COLUMN 8), RMIS (COLUMN 9), RSIS (COLUMN 10), AND NUMBER OF INSTRUCTIONS (IN MILLIONS) FOR LAUNCHING (COLUMNS 11-13) AND

EXECUTING EACH APPLICATION (COLUMNS 14-16) FOR BASELINE (Sb) AND ASTER (Sa).

App
No.

No. of Context Switches Hypervisor to/from VM Calls New Interface Calls in Sa Application Launch (Microdroid) Application Execution (Payload)

Sb Sa % Ovh Sb Sa % Ovh SMCs RMIs RSIs Sb Sa % Ovh Sb Sa % Ovh

App 1 302 2990 890.06 130833 541566 313.93 482461 541566 92 1269.605 2932.008 130.94 1905.165 4101.628 115.29
App 2 246 2304 836.58 103090 423445 310.75 364395 423445 92 1289.332 2425.258 88.10 1731.185 3225.788 86.33
App 3 301 3460 1049.50 130549 624385 378.27 624385 565287 92 1287.338 2890.267 124.52 1772.187 4058.681 129.02

pVM apps and implement an OTP generator app like in
previous works [10]. For the existing pVM apps, we see
that once we setup the ASTER platform with support to run
Microdroid, we can execute the apps without any changes
or developer effort. We run the apps in both our setups,
start our instruction tracer when the Android app starts, and
report the creation and runtime overheads in Tab. 4. We see
that all case studies invoke the same number of RSI calls—
they are not app-specific, but are invoked by Microdroid
which is used by all case studies.
App1: Google’s Protected Downloads. Google’s Private
Compute Services app provides several services to get
Google’s sensitive data (e.g., models, heuristics) from the
cloud [38] which we tested on a Pixel 8 phone. We found
that one of these services launches a pVM to generate
a public-private key pair for protected downloads. In this
setting, Google launches pVMs to generate the key pair and
send the public key to an Android app. To generate this
key-pair, the pVM uses a VM-specific secret that it derives
using local attestation during its boot. We migrate this pVM
and use it as an SBS to demonstrate the compatibility of
ASTER with existing Android use-cases. To compare this
Sa, we run the same VM payload in Sb. After SBS starts,
Sa executes 86% more instructions than Sb. Sa performs
total 890% more context switches to create, boot, and run
the SBS.

Another use-case for Google’s pVMs is isolated com-
pilation. Isolated compilation uses a pVM to download
updates from Google’s servers and compile them in an
isolated environment inaccessible to Android. While this
use-case fits ASTER’s SBSes model, we were unable to get
the isolated compilation running on our Pixel phone and
therefore could not run it with ASTER as well.
App2: Microdroid Test App. The Android platform con-
tains a test app that deploys a Microdroid VM as a pVM.
The VM takes as input two numbers from the Android app,
adds them, and sends the result back to the Android app. We
execute this Microdroid VM with both our setups (Tab. 4).
In total, Sa executes 86% more instructions and performs
837% more context switches.
App3: OTP Generator. We implement an OTP generator
Android app that spawns a Microdroid VM using Android’s
APIs. The Android app allows a user to scan a QR Code
on a website to obtain a registration secret from the OTP
server. It then spawns a Microdroid VM and sends it this
registration secret. Once the VM boots, the app requests an
OTP. The VM computes the OTP with the initial registration
secret and sends it to the app. As expected, we see that

Sa performs 1050% more context switches than Sb due
to the switches between the realm to normal worlds for
communication. During runtime, we see that Sa executes
129% more instructions than Sb.

Our app assumes a trust-on-first use approach to transfer
the key to the VM. Sanctuary implements a similar OTP
mechanism that executes in a sandboxed normal world
TA [10]. It proposes an OTP protocol that assumes that the
OTP server has the public key of the TA. The OTP server
transmits the initial registration key encrypted using the TA’s
public key. This protocol eliminates the trust-on-first use
assumption and replaces it with a pre-shared key. We can
implement a similar protocol and leverage the attestation
primitives of the SBS to setup a secure channel between the
SBS and the OTP server to transmit the registration key.
Remark: Comparison to CCA baselines. In our evaluation
we compare the performance of ASTER to regular VM
executions using Linux KVM. Although ASTER incurs sig-
nificant overheads for SBS creation and boot we emphasize
that these measurements include the cost of running a VM
using CCA. As shown in prior works [39], moving a VM
to CCA typically incurs such high costs for setup.

9. Related Work

In Section 2, we discuss previous works that address
TrustZone security to motivate the need for ASTER. Here,
we start with prior works that consider the security of CCA.
Rethinking the Android TEE Landscape. ASTER is mo-
tivated by the wide range of attacks in the Android TEE
ecosystem, as we summarized in Section 2. ASTER not only
protects SBSes but also rethinks the protection for Android
and Secure-world. This holistic re-examination leads us to
choose a design that is functionally compatible with the
existing landscape and retrofits security. ASTER’s choice
of VM abstraction is motivated by realistic deployment
scenarios in the Android ecosystem. ASTER considers a
mobile platform with Android and deploys SBSes in the
realm world that can range from trusted binaries to full VMs.
Native Android support for pKVM, Microdroid, and real-
world deployments of pVMs indicate that this abstraction is
here to stay.

Next, we compare ASTER to prior works that also use
multiple GPTs. In particular, Shelter advocates for small
SApps in normal world which do not trust the RMM [18]. It
intentionally limits expressiveness and cannot support VM
abstractions, mainly because of low-TCB design choices.
Further, the need to remove the RMM from the TCB leads

13



to the choice of one GPT per SApp in Shelter. Instead,
ASTER only requires two GPTs and uses the RMM for intra-
VM isolation. Lastly, prior CCA-based approaches including
Shelter only aim to offer one-way isolation i.e., protect the
confidential workloads from software adversaries (host OS,
hypervisor, secure world). So they do not aim to achieve
sandboxing as well as mutual isolation, which is a novel
contribution in ASTER.
CCA-based VMs. Samsung Islet, Huawei, and Linaro pro-
vide CCA implementation stacks to deploy realm VMs [29],
[40], [41], while other works have taken steps towards
verifying the CCA trusted software stack [42], [43], [44].
In ASTER, we use Linaro’s software stack because it is
officially supported by Arm. Islet aims to achieve an end-to-
end usage, where an Android app launches a realm VM on
the phone to download models from a confidential VM run-
ning in the cloud. However, Islet implementation currently
only supports Linux VMs. For Android, it does not define a
concrete security model for the mobile platform, or provide
implementations to run the realm VMs with Android. More
importantly, it does not reason about all four primitives as
we do in ASTER which stems from our motivation to secure
the Android TEE ecosystem. Future works can adopt ASTER
to Islet to improve its security.
Device Support. Arm allows CCA-enabled integrated de-
vices to connect to realm VMs and with optional RME
device assignment extension it can connect TEE-enabled
accelerators to realm VMs. Cage and Acai use CCA to
connect integrated devices and TEE-accelerators to realm
VMs respectively [36], [37], with the right hardware support
they can be used with ASTER. Shelter, Cage, and Acai
use multiple GPTs either to isolate the shelter apps in
the normal world or to isolate devices-accesses to realm
memory. ASTER leverages GPTs to strengthen CCA security
and guarantee mutual isolation between normal, realm, and
secure worlds with two GPTs.
Arm TEEs for Mobile Devices. Several previous works
and phone manufacturers execute trusted kernels in secure
world EL1 [24], [45], [46], [47], build language-runtime
support to build isolated trusted services [48], or build TAs
for specialised secure world computation [49]. The lack
of sandboxing with these approaches has been exploited
by attackers to compromise mobile security [3], [4], [50].
Learning from this, ASTER builds sandboxing as a key
security primitive in its design. Like CCA, TrustZone sup-
ports attaching secure devices which several works have
explored [51], [52], [53], [54], [55], [56], [57].
Interface Security In Arm. BinderCracker and FANS pro-
pose fuzzing methods to detect Binder interface vulnera-
bilities [20], [22], [58], [59] which can be directly applied
to ASTER’s SBSes to strengthen interface security. Several
previous works have proposed black-box fuzzing techniques
for trusted services [60], [61] and static analysis to detect in-
terface vulnerabilities [50]. The insights from these methods
can be applied to ASTER’s interfaces. Several prior works
have demonstrated interface attacks on Intel SGX, AMD
SEV-SNP, and Intel TDX [26], [27], [62], [63], [64], [65],
[66], [67], [68], [69]. In response to these interface attacks,

prior works have employed fuzzing [70], [71] and symbolic
execution [67], [68], [72], [73] to detect interface bugs
in SGX enclaves. This history of interface bugs breaking
enclave security highlights the need for ASTER interfaces.
Sandboxing Principles. Sandboxing principles have been
extensively studied and adopted for applications beyond
the Arm platform [74], [75]. Software-based fault isola-
tion is a longstanding technique to isolate processes from
each other [76]. This technique has been used by several
works to build sandboxes [77], [78], [79], [80]. Google
Native Client (NaCl) applies SFI to different architectures
using hardware and software-based techniques to build sand-
boxes [81], [82]. Another widely-used approach to sandbox-
ing is through language-based mechanisms such as those
adopted by WebAssembly where the compiler adds dynamic
checks on memory accesses to isolate processes [83], [84],
[85]. ASTER builds SBSes using Arm CCA.
Beyond Android. ASTER’s security principles can be useful
in cloud security. In ASTER, we use the flexibility that GPTs
provide to ensure the mutual isolation principle. The lack of
this principle has opened several attacks in Intel SGX [86]
and several works have proposed mechanisms to address
this problem [86], [87], [88], [89], [90]. Keystone ensures
mutual isolation for enclaves with RISC-V [25]. Future work
can look into enforcing this principle for Intel TDX and
AMD SEV VMs using microcode, hardware changes, or by
leveraging privilege levels [91]. Finally, ASTER’s interface
security principles can be useful for other TEEs that deploy
VMs in the cloud. In fact, the VM abstraction in the cloud
might make it easier to secure these interfaces.

10. Conclusion

We analyze the Android TEE security landscape to
conclude that TrustZone cannot enforce principle of least
privilege to protect sensitive execution on Android phones.
We present a new design, ASTER, to addresses gaps in Trust-
Zone and trusted hypervisor based solutions. We first show
that Arm CCA does not solve the least privilege problem.
We repurpose it to enable sandboxed execution of secure
services while being isolated from Android, secure world,
as well as other secure services. Then, our use of hardware-
based attestation and conscious interface design ensures
ASTER does not suffer from the security gaps and chal-
lenges of existing TEEs for Android. Our ASTER prototype
shows its feasibility and ability to support existing SBSes on
Android while promising acceptable runtime overheads. We
hope that ASTER unlocks a new TEE design space for the
Android ecosystem to not only address prior security gaps
but also open up new application avenues by the virtue of
its security.

Acknowledgments

We thank Friederike Groschupp for her feedback. This
work was supported (in part) by the ETH4D Humanitarian
Action Challenge Grant and Zurich Information Security
and Privacy Center (ZISC).

14



References

[1] Ahmed Sherif, “Market share of mobile operating systems worldwide
from 2009 to 2024, by quarter,” May 2024, (2024). Accessed: Jun 6,
2024. [Online]. Available: https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/.

[2] Google, “Android Security,” (2024). Accessed: Jun 6, 2024. [Online].
Available: https://source.android.com/docs/security.

[3] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee sys-
tems,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020,
pp. 1416–1432.

[4] P. Jiang, Q. Wang, J. Cheng, C. Wang, L. Xu, X. Wang, Y. Wu,
X. Li, and K. Ren, “Boomerang: Metadata-Private messaging
under hardware trust,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). Boston, MA:
USENIX Association, Apr. 2023, pp. 877–899. [Online]. Available:
https://www.usenix.org/conference/nsdi23/presentation/jiang

[5] Android, “AVF architecture,” (2024). Accessed: Jun 6, 2024. [On-
line]. Available: https://source.android.com/docs/core/virtualization/
architecture.

[6] ARM, “Arm Confidential Compute Architecture (ARM-CCA),”
https://www.arm.com/why-arm/architecture/security-features/arm-
confidential-compute-architecture.

[7] Z. Ma, X. Tan, L. Ziarek, N. Zhang, H. Hu, and Z. Zhao, “Return-
to-non-secure vulnerabilities on arm cortex-m trustzone: Attack and
defense,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2023, pp. 1–6.

[8] GlobalPlatform, “TEE Client API Specification v1.0 —
GPD SPE 007,” (2024). Accessed: Jun 6, 2024. [Online]. Available:
https://globalplatform.org/specs-library/tee-client-api-specification/.

[9] Y. Chen, Y. Zhang, Z. Wang, and T. Wei, “Downgrade attack on
trustzone,” arXiv preprint arXiv:1707.05082, 2017.

[10] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Sanc-
tuary: Arming trustzone with user-space enclaves.” in NDSS. NDSS,
2019.

[11] W. Li, Y. Xia, L. Lu, H. Chen, and B. Zang, “Teev: Virtualizing
trusted execution environments on mobile platforms,” in Proceedings
of the 15th ACM SIGPLAN/SIGOPS international conference on
virtual execution environments, 2019, pp. 2–16.

[12] D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “ReZone: Disarming
TrustZone with TEE privilege reduction,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 2261–2279.

[13] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz:
Virtualizing arm trustzone,” in USENIX Security, 2017.

[14] Qualcomm Innovation Center, Inc., “Gunyah Hypervisor,” (2024).
Accessed: Jun 6, 2024. [Online]. Available: https://github.com/quic/
gunyah-hypervisor?tab=readme-ov-file.

[15] D. Li, Z. Mi, Y. Xia, B. Zang, H. Chen, and H. Guan, “Twinvisor:
Hardware-isolated confidential virtual machines for arm,” in Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021, pp. 638–654.

[16] Google, “Hafnium,” (2024). Accessed: Jun 6, 2024. [Online].
Available: https://hafnium.googlesource.com/hafnium/+/HEAD/docs/
Architecture.md.

[17] D. Kwon, J. Seo, Y. Cho, B. Lee, and Y. Paek, “Pros: Light-weight
privatized se cure oses in arm trustzone,” IEEE Transactions on
Mobile Computing, vol. 19, no. 6, pp. 1434–1447, 2019.

[18] Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang,
S. Yan, and Z. He, “SHELTER: Extending arm CCA with isolation
in user space,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
6257–6274. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/zhang-yiming

[19] J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, “Elasticlave:
An efficient memory model for enclaves,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 4111–4128.

[20] H. Feng and K. G. Shin, “Bindercracker: Assessing the robustness of
android system services,” arXiv preprint arXiv:1604.06964, 2016.

[21] ——, “Understanding and defending the binder attack surface in
android,” in Proceedings of the 32nd Annual Conference on Computer
Security Applications, 2016, pp. 398–409.

[22] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge,
“{FANS}: Fuzzing android native system services via automated
interface analysis,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 307–323.

[23] Jason Parker, “Introducing Arm’s Dynamic TrustZone
technology,” (2024). Accessed: Jun 6, 2024. [Online]. Available:
https://community.arm.com/arm-community-blogs/b/architectures-
and-processors-blog/posts/introducing-arms-dynamic-trustzone-
technology.

[24] Linaro, “OP-TEE,” (2024). Accessed: Jun 6, 2024. [Online]. Avail-
able: https://www.trustedfirmware.org/projects/op-tee/.

[25] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An open framework for architecting trusted execution
environments,” in EuroSys, 2020.

[26] B. Schlüter, S. Sridhara, A. Bertschi, and S. Shinde, “WeSee: Using
Malicious #VC Interrupts to Break AMD SEV-SNP,” in IEEE S&P,
2024.

[27] B. Schlüter, S. Sridhara, M. Kuhne, A. Bertschi, and S. Shinde,
“Heckler: Breaking Confidential VMs with Malicious Interrupts,” in
USENIX Security, 2024.

[28] A. Holdings, “Arm architecture reference manual for a-profile ar-
chitecture,” https://developer.arm.com/documentation/ddi0487/latest/,
2023.

[29] Linaro, “Building an RME stack for QEMU,” (2024). Accessed: Jun
5, 2024. [Online]. Available: https://linaro.atlassian.net/wiki/pages/
viewpage.action?pageId=29051027459&pageVersion=40.

[30] ARM and Linaro, “Realm Management Monitor for Qemu, v1.0-
eac5,” (2023). Accessed: Jun 5, 2024. [Online]. Available: https://
git.codelinaro.org/linaro/dcap/rmm/-/tree/rmm-v1.0-eac5.

[31] ——, “Trusted Firmware for Qemu with CCA, v2.10,” (2023). Ac-
cessed: Jun 5, 2024. [Online]. Available: https://git.codelinaro.org/
linaro/dcap/tf-a/trusted-firmware-a/-/tree/v1.0-eac5.

[32] Linux and Linaro, “Linux Kernel for Qemu with CCA, v6.7-
rc4 ,” (2023). Accessed: Jun 5, 2024. [Online]. Available: https:
//gitlab.arm.com/linux-arm/linux-cca/-/tree/cca-full/rmm-v1.0-eac5.

[33] Google, “Manifest for Android 13.0.0 Release 12,” (2022). Accessed:
Jun 5, 2024. [Online]. Available: https://android.googlesource.com/
platform/manifest/+/refs/heads/android-13.0.0 r12.

[34] ——, “Manifest for Android Kernel 15-6.6,” (2024). Accessed: Jun 5,
2024. [Online]. Available: https://android.googlesource.com/kernel/
manifest/+/refs/heads/common-android15-6.6.

[35] Android, “Build and run an Android system image targeting the
ARM Fixed Virtual Platform or QEMU.” (2024). Accessed: Jun
6, 2024. [Online]. Available: https://cs.android.com/android/platform/
superproject/main/+/main:device/generic/goldfish/fvpbase/.

[36] C. Wang, F. Zhang, Y. Deng, K. Leach, J. Cao, Z. Ning, S. Yan, and
Z. He, “Cage: Complementing arm cca with gpu extensions.” ISOC,
2024.

[37] S. Sridhara, A. Bertschi, B. Schlüter, M. Kuhne, F. Aliberti, and
S. Shinde, “Acai: Protecting Accelerator Execution with Arm Confi-
dential Computing Architecture,” in USENIX Security, 2024.

[38] Google, “Android Private Compute Services,” (2024). Accessed:
Jun 6, 2024. [Online]. Available: https://github.com/google/private-
compute-services.

15

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://source.android.com/docs/security
https://www.usenix.org/conference/nsdi23/presentation/jiang
https://source.android.com/docs/core/virtualization/architecture
https://source.android.com/docs/core/virtualization/architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://globalplatform.org/specs-library/tee-client-api-specification/
https://github.com/quic/gunyah-hypervisor?tab=readme-ov-file
https://github.com/quic/gunyah-hypervisor?tab=readme-ov-file
https://hafnium.googlesource.com/hafnium/+/HEAD/docs/Architecture.md
https://hafnium.googlesource.com/hafnium/+/HEAD/docs/Architecture.md
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-yiming
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-yiming
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/introducing-arms-dynamic-trustzone-technology
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/introducing-arms-dynamic-trustzone-technology
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/introducing-arms-dynamic-trustzone-technology
https://www.trustedfirmware.org/projects/op-tee/
https://developer.arm.com/documentation/ddi0487/latest/
https://linaro.atlassian.net/wiki/pages/viewpage.action?pageId=29051027459&pageVersion=40
https://linaro.atlassian.net/wiki/pages/viewpage.action?pageId=29051027459&pageVersion=40
https://git.codelinaro.org/linaro/dcap/rmm/-/tree/rmm-v1.0-eac5
https://git.codelinaro.org/linaro/dcap/rmm/-/tree/rmm-v1.0-eac5
https://git.codelinaro.org/linaro/dcap/tf-a/trusted-firmware-a/-/tree/v1.0-eac5
https://git.codelinaro.org/linaro/dcap/tf-a/trusted-firmware-a/-/tree/v1.0-eac5
https://gitlab.arm.com/linux-arm/linux-cca/-/tree/cca-full/rmm-v1.0-eac5
https://gitlab.arm.com/linux-arm/linux-cca/-/tree/cca-full/rmm-v1.0-eac5
https://android.googlesource.com/platform/manifest/+/refs/heads/android-13.0.0_r12
https://android.googlesource.com/platform/manifest/+/refs/heads/android-13.0.0_r12
https://android.googlesource.com/kernel/manifest/+/refs/heads/common-android15-6.6
https://android.googlesource.com/kernel/manifest/+/refs/heads/common-android15-6.6
https://cs.android.com/android/platform/superproject/main/+/main:device/generic/goldfish/fvpbase/
https://cs.android.com/android/platform/superproject/main/+/main:device/generic/goldfish/fvpbase/
https://github.com/google/private-compute-services
https://github.com/google/private-compute-services


[39] S. Siby, S. Abdollahi, M. Maheri, M. Kogias, and H. Haddadi,
“Guarantee: Towards attestable and private ml with cca,” in
Proceedings of the 4th Workshop on Machine Learning and
Systems, ser. EuroMLSys ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 1–9. [Online]. Available:
https://doi.org/10.1145/3642970.3655845

[40] Samsung, “Islet,” (2024). Accessed: Jun 6, 2024. [Online]. Available:
https://islet-project.github.io/islet/.

[41] Huawei, “Huawei CCA QEMU,” (2024). Accessed: Jun 6, 2024.
[Online]. Available: https://github.com/Huawei/Huawei CCA
QEMU.

[42] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell,
“Design and verification of the arm confidential compute architec-
ture,” in 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), 2022, pp. 465–484.

[43] A. C. Fox, G. Stockwell, S. Xiong, H. Becker, D. P. Mulligan,
G. Petri, and N. Chong, “A verification methodology for the arm®
confidential computing architecture: From a secure specification to
safe implementations,” Proceedings of the ACM on Programming
Languages, vol. 7, no. OOPSLA1, pp. 376–405, 2023.

[44] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, G. Stockwell, M. Knight,
and C. Garcia-Tobin, “Enabling realms with the arm confidential
compute architecture.”

[45] Android, “Trusty TEE,” (2024). Accessed: Jun 6, 2024. [Online].
Available: https://source.android.com/docs/security/features/trusty.

[46] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice: Hardware-
assisted isolated computing environments on mobile devices,” in 2015
45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2015, pp. 367–378.

[47] Qualcomm, “Guard your data with the qualcomm snapdragon mobile
platform,” (2024). Accessed: Jun 6, 2024. [Online]. Available:
https://www.qualcomm.com/content/dam/qcomm-martech/
dm-assets/documents/guard your data with the qualcomm
snapdragon mobile platform2.pdf.

[48] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone
to build a trusted language runtime for mobile applications,”
SIGARCH Comput. Archit. News, vol. 42, no. 1, p. 67–80, feb 2014.
[Online]. Available: https://doi.org/10.1145/2654822.2541949

[49] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena, “Droidvault:
A trusted data vault for android devices,” in 2014 19th International
Conference on Engineering of Complex Computer Systems. IEEE,
2014, pp. 29–38.

[50] D. Suciu, S. McLaughlin, L. Simon, and R. Sion, “Horizontal
privilege escalation in trusted applications,” in 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/suciu

[51] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee, “Secloak: Arm
trustzone-based mobile peripheral control,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications,
and Services, 2018, pp. 1–13.

[52] H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions for
trusted sensors,” in Proceedings of the 10th international conference
on Mobile systems, applications, and services, 2012, pp. 365–378.

[53] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li,
“Building trusted path on untrusted device drivers for mobile devices,”
in Proceedings of 5th Asia-Pacific Workshop on Systems, ser. APSys
’14. New York, NY, USA: Association for Computing Machinery,
2014.

[54] C. M. Park, D. Kim, D. V. Sidhwani, A. Fuchs, A. Paul, S.-J.
Lee, K. Dantu, and S. Y. Ko, “Rushmore: securely displaying static
and animated images using trustzone,” in Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications,
and Services, 2021, pp. 122–135.

[55] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan,
Z. He, J. Cao et al., “Strongbox: A gpu tee on arm endpoints,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 769–783.

[56] H. Park and F. X. Lin, “Safe and practical gpu computation in
trustzone,” in Proceedings of the Eighteenth European Conference
on Computer Systems, 2023, pp. 505–520.

[57] Z. Yao, S. M. Seyed Talebi, M. Chen, A. Amiri Sani, and T. Anderson,
“Minimizing a smartphone’s tcb for security-critical programs with
exclusively-used, physically-isolated, statically-partitioned hardware,”
in Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services, 2023, pp. 233–246.

[58] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android.”
in NDSS, vol. 17, 2012, p. 19.

[59] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“Quire: Lightweight provenance for smart phone operating systems,”
in USENIX security symposium, vol. 31. San Francisco, CA;, 2011,
p. 3.

[60] M. Busch, A. Machiry, C. Spensky, G. Vigna, C. Kruegel, and
M. Payer, “Teezz: Fuzzing trusted applications on cots android de-
vices,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2023, pp. 1204–1219.

[61] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, and M. Grace,
“PARTEMU: Enabling dynamic analysis of Real-World TrustZone
software using emulation,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
789–806. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/harrison

[62] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves,” in Computer
Security–ESORICS 2016: 21st European Symposium on Research
in Computer Security, Heraklion, Greece, September 26-30, 2016,
Proceedings, Part I 21. Springer, 2016, pp. 440–457.

[63] J. R. Sanchez Vicarte, B. Schreiber, R. Paccagnella, and C. W.
Fletcher, “Game of threads: Enabling asynchronous poisoning
attacks,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 35–52. [Online]. Available:
https://doi.org/10.1145/3373376.3378462

[64] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia,
and F. Piessens, “A tale of two worlds: Assessing the vulnerability
of enclave shielding runtimes,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 1741–1758. [Online]. Available:
https://doi.org/10.1145/3319535.3363206

[65] J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai, “Smashex: Smashing
sgx enclaves using exceptions,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’21, 2021.

[66] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: Secure applications on an untrusted operating system,” SIG-
PLAN Not., vol. 48, no. 4, p. 265–278, Mar. 2013.

[67] M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “Coin
attacks: On insecurity of enclave untrusted interfaces in sgx,”
in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 971–985. [Online]. Available:
https://doi.org/10.1145/3373376.3378486

[68] F. Alder, L.-A. Daniel, D. Oswald, F. Piessens, and J. Van Bulck,
“Pandora: Principled symbolic validation of intel sgx enclave run-
times.”

16

https://doi.org/10.1145/3642970.3655845
https://islet-project.github.io/islet/
https://github.com/Huawei/Huawei_CCA_QEMU
https://github.com/Huawei/Huawei_CCA_QEMU
https://source.android.com/docs/security/features/trusty
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://doi.org/10.1145/2654822.2541949
https://www.usenix.org/conference/usenixsecurity20/presentation/suciu
https://www.usenix.org/conference/usenixsecurity20/presentation/suciu
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://doi.org/10.1145/3373376.3378462
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3373376.3378486


[69] S. Checkoway and H. Shacham, “Iago attacks: why the system call
api is a bad untrusted rpc interface,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 1, pp. 253–264, 2013.

[70] T. Cloosters, J. Willbold, T. Holz, and L. Davi, “SGXFuzz:
Efficiently synthesizing nested structures for SGX enclave
fuzzing,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp.
3147–3164. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/cloosters

[71] A. Khan, M. Zou, K. Kim, D. Xu, A. Bianchi, and D. J. Tian,
“Fuzzing sgx enclaves via host program mutations,” in 2023 IEEE
8th European Symposium on Security and Privacy (EuroS&P), 2023,
pp. 472–488.

[72] T. Cloosters, M. Rodler, and L. Davi, “TeeRex: Discovery and ex-
ploitation of memory corruption vulnerabilities in SGX enclaves,” in

[77] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“Xfi: Software guards for system address spaces,” in Proceedings of
the 7th symposium on Operating systems design and implementation,
2006, pp. 75–88.

[78] S. McCamant and G. Morrisett, “Efficient, verifiable binary sandbox-
ing for a cisc architecture,” 2005.

[79] ——, “Evaluating sfi for a cisc architecture.” in USENIX Security
Symposium, vol. 10, 2006, pp. 209–224.

[80] Z. Yedidia, “Lightweight fault isolation: Practical, efficient, and se-
cure software sandboxing,” in Proceedings of the 29th ACM In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2024, pp. 649–665.

[81] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” Communications of the ACM,
vol. 53, no. 1, pp. 91–99, 2010.

[82] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen, “Adapting software fault isolation to contem-
porary {CPU} architectures,” in 19th USENIX Security Symposium
(USENIX Security 10), 2010.

[83] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with webassembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2017, pp. 185–200.

[84] K. Bhargavan, J. Protzenko, A. Rossberg, and D. Stefan, “Foundations
of webassembly,” 2023.

[85] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage,
D. Stefan, and F. Brown, “Wave: a verifiably secure webassembly
sandboxing runtime,” in 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2023, pp. 2940–2955.

29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 841–858. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/cloosters

[73] Y. Wang, Z. Zhang, N. He, Z. Zhong, S. Guo, Q. Bao, D. Li,
Y. Guo, and X. Chen, “Symgx: Detecting cross-boundary pointer
vulnerabilities of sgx applications via static symbolic execution,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 2710–2724.
[Online]. Available: https://doi.org/10.1145/3576915.3623213

[74] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for tcb minimization,” in Pro-
ceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, 2008, pp. 315–328.

[75] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,” in 2010
IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 143–158.

[76] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the fourteenth ACM
symposium on Operating systems principles, 1993, pp. 203–216.

[86] S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam, C. Garman,
D. Genkin, A. Miller, E. Ronen, and Y. Yarom, “Sok: Sgx. fail: How
stuff get exposed,” 2022.

[87] A. Ahmad, J. Kim, J. Seo, I. Shin, P. Fonseca, and B. Lee, “Chancel:
Efficient multi-client isolation under adversarial programs.” in NDSS,
2021.

[88] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“Sgx-shield: Enabling address space layout randomization for sgx
programs.” in NDSS, 2017.

[89] S. Constable, J. V. Bulck, X. Cheng, Y. Xiao, C. Xing,
I. Alexandrovich, T. Kim, F. Piessens, M. Vij, and M. Silberstein,
“AEX-Notify: Thwarting precise Single-Stepping attacks through
interrupt awareness for intel SGX enclaves,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 4051–4068. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity23/presentation/constable

[90] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1741–1758.

[91] A. Ahmad, B. Ou, C. Liu, X. Zhang, and P. Fonseca, “Veil: A
protected services framework for confidential virtual machines,” in
Proceedings of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
Volume 4, 2023, pp. 378–393.

17

https://www.usenix.org/conference/usenixsecurity22/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity22/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://doi.org/10.1145/3576915.3623213
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://www.usenix.org/conference/usenixsecurity23/presentation/constable

	Introduction
	Motivation
	Problem Formulation
	Challenges in Using Arm CCA
	Background: Arm CCA
	Threat Model
	Potential Solutions
	Solution 1: Execute Android in Realm World
	Solution 2: Execute SBSes in Realm World
	Solution 3: SBSes in Secure World Isolated from Normal World


	Aster Overview
	Mutual Isolation and Sandboxing
	Interfaces
	Communications with Android Apps
	Virtio Device Support
	Interrupts

	Attestation and Validation

	Security Analysis
	Implementation
	SBSes in the Realm World
	Implementing Aster security primitives.
	RMM
	TF

	Local SBS Attestation

	Evaluation
	Experiment Platform
	Cost Breakdown
	Case Studies: Android & Protected VM Apps

	Related Work
	Conclusion
	References

