Confidential Computing with
Heterogeneous Devices at Cloud-Scale

Aritra Dhar' Supraja Sridhara*

TComputing Systems Lab, Huawei Zurich Research Center

Abstract—Cloud-centric workloads increasingly leverage
domain-specific accelerators (DSAs) such as GPU, NPU,
FPGA, etc., to achieve massive speedup over general-purpose
CPUs. These workloads compute sensitive data; furthermore,
the programs can be proprietary business secrets such as
high-performance AI models. Therefore, several confidential
cloud solutions have recently emerged to protect against the
attacker-controlled software stack (OS/VMM) and the cloud
service providers or CSPs themselves. CPU-centric trusted
execution environments, or TEEs, have been around for decades
and are deployed commercially. However, despite some recent
proposals, most nodes lack TEE capability and, therefore, are
unprotected against malicious CSP and software stack.

We address this gap by proposing a new dedicated hardware
module, the security controller (SC), that acts as the TEE proxy
for the legacy non-TEE DSA nodes in a data center across racks.
SC enforces access control and attestation mechanisms and
protects the non-TEE nodes even from a physical attacker. This
way, SC enables new-generation TEE-enabled nodes and legacy
non-TEE nodes to be used in a data center simultaneously while
ensuring security. We implement and synthesize SC hardware
and evaluate it with real-world cloud-centric workloads with
heterogeneous DSAs. Our evaluation shows that, on average, SC
introduces 1.5-5% overhead while running AIl, Redis, and file
system workloads and scales well with an increasing number of
DSA nodes (up to 2236 concurrent NPUs running CNNs).

I. INTRODUCTION

Cloud service providers (CSP) are increasingly using het-
erogeneous domain-specific accelerators or DSAs [1, 2, 3] to
accelerate workloads such as AI/ML [4], graph processing [5],
in-memory caches [6], and many more. To maximize resource
utilization and scalability, DSAs are shared between multiple
tenants concurrently [7]. Such heterogeneity brings additional
challenges as the attack surface includes mutually distrusting
co-tenants, as well as CSPs. A malicious CSP controls all the
software and hardware infrastructure and can maliciously mod-
ify the configuration of tenants’ nodes [8]. Trusted execution
environments (TEEs) for CPUs [9, 10] as well as for DSAs [11,
12, 13, 14] enable secure user code execution without trusting
the OS or hypervisors. CPU-TEEs have become important
offerings in the cloud [15, 16, 17, 18]. Although TEEs serve
a necessary role, they are not sufficient if the user wants to
fully use the heterogeneity in a modern multi-tenant cloud.

Only a small fraction of the data center nodes that
tenants can rent are TEE-enabled. If users want to accelerate
training/inference on an Al accelerator, they have to choose
between performance and security. Either the users execute

Shweta Shinde*

Srdjan Capkun* Renzo Andri'

*ETH Ziirich

Network Switch

O

&é

InfiniBand

\
Racks
\

Fig. 1: The figure shows a high-level overview of Data center
topology. Racks are connected over high-speed optical switches, while
clusters of nodes within a rack are linked via InfiniBand to the data
center-level switch. The management plane (MP) performs resource
management and monitoring.

the computation on a TEE-enabled general-purpose CPU,
therefore sacrificing performance. Or, the users execute on the
non-TEE Al accelerator in an unprotected environment, risking
compromising the data and computation. One way to address
this problem is to make all nodes TEE-enabled. However,
this is impractical and leaves out many non-TEE legacy
devices. Prior works protect non-TEE nodes by deploying
bus-level isolation if they are all physically connected to a
TEE host [19, 20, 21]. Such host-centric solutions are not
applicable to a disaggregated data center setting, where similar
types of nodes are clustered together in racks. The racks
are connected over high-speed switches, as shown in Fig. 1.
A CSP may have several such data centers in different
geographical locations connected over fast networking. A user
workload may span over multiple data centers. Solutions that
enable TEE abstractions for a single rack containing non-TEE
CPU-GPU seem promising [22]. However, they do not
scale to multiple racks, do not support multi-tenancy, require
changes in the software stack, and are not designed to leverage
TEE-enabled nodes. Lastly, simply connecting TEE nodes
and rack-level solutions is not sufficient, as it does not make
them collectively secure. Thus, careful design considerations
are required for security and scalability at a data center level.

To address this gap, in this paper, we design a solution to
protect legacy non-TEE DSA nodes and connect them to the
new-generation TEE-capable nodes. We design a distributed
TEE solution that allows a tenant to securely use TEE nodes

(both CPUs and DSAs) and non-TEE legacy nodes. We use
three main insights to achieve this goal. First, we use TEEs on
available CPUs and DSAs to protect all outgoing data. Second,
we employ a security controller (SC), a dedicated low-TCB
hardware device, to protect all non-TEE nodes. The SC pro-
vides TEE properties such as attestation, isolation, and secure
channels to all non-TEE nodes. Although these two design de-
cisions may appear trivial and adequate to protect data and exe-
cution on nodes, further examinations reveal several issues that
require attention. For example, the CSP can reconfigure nodes
such that multiple tenants are mapped to the same memory
location, compromising isolation or disabling TEE protection
during sensitive computations. A physical attacker can bypass
the security controller by, e.g., directly connecting non-TEE
nodes physically. Local protection at each node is insufficient,
and we must ensure global isolation. Our third insight system-
atically addresses the gaps by attesting and locking the initial
state of nodes and checking resource management decisions for
violations of resource isolation and secure path guarantees. We
provide a secure physical perimeter to non-TEE nodes for pro-
tection against physical attacks. In summary, we approach the
problem in a distributed manner by first ensuring local security
and then enforcing global properties to maintain security. We
synthesize and place-and-route (where the components/blocks
are placed and wires are routed between them) our prototype
SC hardware in 28 nm, which is 0.46 mm?. Our synthesized SC
prototype scales with concurrent multi-tenants and supports up
to 2236 concurrent NPUs running RetinaNet-RN50 or up to 117
SSDs running the FIO (R-RW) benchmark. We use three cloud-
focused benchmarks (CNN inference, Redis, and file system) to
show the practicality of our setup with low overhead.

Our Contributions. We now summarize our contributions:

1) Design Space Exploration We explore the design space for
enclave execution in a heterogeneous setting of a multi-tenant
cloud and explore five potential ways to compose distributed
enclaves with a mixture of TEE and non-TEE nodes. We
also analyze the pros and cons of these design choices and
pick the most suitable for large-scale data centers. We show
the feasibility of using TEE and non-TEE nodes to provide
enclave security primitives (Section III).

2) End-to-end System Design and Analysis Our end-to-end
system for data centers include both TEE and non-TEE
nodes. We enable TEE in two new DSAs, use two existing
TEE-DSAs, and integrate them with our system. Our
attestation mechanisms protect the integrity of distributed
enclaves, as well as the configurations of the platforms
involved. We provide an extensive security analysis of our
proposed design against potential attacks from untrusted
cloud service providers and compromised software stacks
(SectionIV, and V).

3) Hardware Prototype and Evaluation We implement
our proposed design in dedicated hardware and evaluate
real-world cloud-centric workloads such as Al, storage, and
in-memory databases that show our system’s scalability and
modest performance costs (Section VI).

II. PROBLEM STATEMENT

We motivate the need for a new cloud-scale design that can
support confidential computing for a diverse set of devices, with
and without TEE support.

A. Setting

Disaggregated architecture [23] in modern data centers
leverages the performance of domain-specific accelerators
(DSA) such as GPUs, NPUs, storage [24], and smart NICs [25]
connected over a fast interconnect as shown in Fig. 1. Each
rack has several CPU or DSA nodes where the CPU nodes
are TEE-capable, and a DSA node could either be a TEE or
a non-TEE (legacy) node. The cloud service provider (CSP)
uses a management plane (CSP-MP) for resource allocation,
revocation, and monitoring [26, 27, 28]. In this setting, a tenant
deploys a job by submitting a manifest to the CSP-MP, specifying
the required size and type of resources from individual nodes.
Motivation: TEE and Non-TEE Devices in Data Centers.
A typical data center workload could be training a large language
model with a large data set or running an inference job (such as
a chatbot) that receives a large set of user queries. This would
involve CPU nodes running the software stack (OS, TensorFlow,
PyTorch), multiple GPUs and FPGAs accelerating the training
and inference, and SSDs storing the training/inference data
and results. We assume that in terms of TEE-capability, the
nodes are heterogeneous. For example, we can assume that most
of the CPUs are TEE enabled as most of the major hardware
vendors such as Intel [29], AMD [10], and ARM [30] provide
mature VM-based TEEs. The rest of the DSAs can either be
TEE-capable or legacy devices. While some existing GPUs, such
as Nvidia H100 [12], provide confidential computing features,
most other GPUs, NPUs, SSDs, FPGA, and many more are
not TEE-capable. While the TEE-capable devices can isolate
multiple tenants and provide a secure channel, the non-TEE
nodes do not have such a feature.

B. Trusted Execution Environments (TEEs)

TEEs provide sandboxed execution domains against an
attacker-controlled software stack such as OS and hypervisor.
TEEs could be standalone programs [31] or fully-fledged operat-
ing systems [30, 10, 29]. Due to the large diversity of TEE designs
and their security properties, formally defining the TEEs is tricky.
For example, in Intel SGX, any IO mechanisms are not secure as
SGX enclaves cannot make system calls and are solely handled
by the privileged OS. Therefore, secure IO is not SGX’s security
property. However, VM-based TEEs such as AMD SEV [10]
and Intel TDX [29] have extensive security features to protect IO
interfaces [32]. Existing work categorizes hardware-supported
TEESs based on their security features, such as memory and cache
isolation, attestation, secure IO, etc [33]. To define TEEs, we
rely on existing TEE definitions in the literature [34], where TEE
enclaves are abstracted to Separation Kernels, which is defined
in the Separation Kernel Protection Profile (SKPP) [35]. A sep-
aration kernel is an isolated execution with carefully controlled
interfaces to communicate with the external world or other sep-
aration kernels. A separation kernel may have shared resources

with other kernels. The security properties of separation kernels

can be found in literature [34] and can be listed as the following:

« Spatial isolation: Data between the separation kernels are
completely isolated (read/write/execute).

o Temporal isolation: The shared resources between separation
kernels cannot leak information to each other.

o Control of information flow: All the communication
interfaces between the separation kernels are vetted and
cannot be performed unless explicitly permitted.

o Fault isolation: A fault or a security vulnerability in one
separation kernel stays localized and cannot be spread to others.
The definition of a TEE relies on the assumption of trust, typi-

cally both static and dynamic trust. Static trustis acomprehensive

security evaluation based on security requirements carried out
only once before deployment. Meanwhile, dynamic trust is based
on animmutable trust anchor known as the root of trust (RoT’). RoT
can be a secure hardware key in a tamper-proof chip. RoT is re-
sponsible for measuring the changing system states (e.g., loading

a kernel module) and is carried out through the system lifecycle.
In summary, a TEE ensures the following:

1) Security in execution: The integrity and confidentiality of the
data and program remain protected from the attacker. There
could be a bootstrapping mechanism, such as a measured
boot, to ensure that the TEE has been initialized properly or
the correct CPU firmware is present.

2) Security in transit: Communication between enclaves or
between enclave and untrusted environment is mediated.
This also includes secure IO paths, such as communication
with peripheral devices.

3) Security in storage: Secure storage is necessary to ensure
that the integrity and confidentiality of the data or keys are
protected while at rest. This also includes rollback prevention.

C. Threat Model

Enclave codes running on CPU cores and DSAs are trusted to
runajob. Co-located enclaves from different tenants are mutually
distrusting. The CSP deploys all the nodes in the data center. We
trust the hardware manufacturer for TEE nodes. These nodes
have a hardware root of trust for generating correct attestation
reports and securing keys. We assume an up-to-date revocation
list is available to determine if an attestation report is from a
revoked node. After verifying its integrity, we also trust the node’s
TEEs software TCB (e.g., VMPLO in AMD SEV), including the
firmware. We assume that host OS, hypervisors, CSP-MP, and
co-located tenants are malicious. We assume a physical attacker
that controls all nodes (including the BIOS and chipset), can plug
in and out malicious nodes and network devices (e.g., switches,
routers, network interconnects, etc.), and can probe the bus and
manipulate all network traffic, therefore, rendering PCle link en-
cryptionand device certification mechanisms [36] untrustworthy.
Finally, we leave Iago [37], side-channels, hardware trojans, and
denial-of-service out of scope for this paper.

D. Gap in Prior Works

To the best of our knowledge, HETEE [22] is the only
proposal that addresses rack-scale confidential computing

infrastructure. Despite addressing similar problem space, there
are key fundamental points that set us apart from HETTE. In
HETEE, the proxy node OS is reloaded before starting the next
job to ensure the node is secure. Furthermore, the boot ROM
chip on the proxy node is removed and replaced with the PCB
traces connected to the SC. This enables the SC to monitor the
secure boot process in the node. The secure boot only ensures the
proxy node can be loaded with the signed OS image. However,
it does not ensure that the OS has no existing vulnerabilities.
Therefore, to ensure the job is isolated on the proxy, one must
trust that the proxy node OS will behave correctly, i.e., the OS
in the TCB. Contrary to this, our design excludes the OS and
hypervisor from the TCB as we do not allow any CPU (and,
therefore, any OS) as a non-TEE node connected to our SC.
A proxy node and corresponding GPU are explicitly allocated
for a single tenant. Therefore, no multi-tenancy is possible. As
the accelerator is physically attached to the proxy node (i.e.,
the node with the CPU that is the primary controller of the
accelerator) behind the SC, there is no way to assign multiple
accelerators to that proxy node dynamically. For example, a host
cannot be assigned to a different accelerator without completely
switching to its corresponding proxy node. In HETEE, the SC
is always on the data path, whereas our design only uses SC
on the data path between the TEE and non-TEE nodes. This
has a performance implication for HETEE (e.g., GoogleNet in
HETEE has over 2x overhead). Moreover, HETEE modifies
the software stack. A special program has to perform code
and data handover between the server node and proxy node
via the SC. This makes HETEE impractical for real-world
deployment. We demonstrate unmodified workloads running on
our proposed system with low overhead (Sec. VI). Additionally,
we discuss other drawbacks of HETEE in Section Sec. III-A,
where we explore several potential design choices to contrast
distributed enclaves in data centers involving TEE and non-TEE
nodes. Other proposals [19, 20, 21] extend CPU-TEE protection
by leveraging MMU to protect MMIO devices and perform
bus-level isolation since devices are physically connected to a
TEE host. However, these do not address the challenges of setting
up data center-scale infrastructure with TEE and legacy devices.

III. DistriBUTED TEE DESIGN SPACE EXPLORATION

We first look at potential design options and draw insights
from our observations of the design space exploration.

A. Potential Designs

We explore several potential ways to design a cloud-scale
trusted computing infrastructure. A high-level overview of five
such designs (Sp-4) can be seen in Fig. 2. Security controller
(SC)is a part of some of these designs that enforce access control
on data between nodes and remote users. SC can be a dedicated
hardware module that can be implemented in many ways. We
discuss one such design in Sec. IV. In the following section,
we explore the constructions of these designs, their security
properties, and their advantages and disadvantages.

T1 H TI g|| TI T2 T1[12 | T T2 /‘Q
CPU TEE CPU TEE CPU TEE

GPU CPU TI T2 T1 [T2 I |T2_|

T2 H T2 , GPU TEE GPU TEE : B TES
GPU CPU ; TL[T2 N
h F SSD TEE ! \

Rack, ; A Rack,’ ! + Rack,

ackc Rack Rack
S Racky S, Rackg| S, S, Rackpy S,

Fig. 2: Cloud-scale heterogeneous TEE designs. The figure shows five potential design choices: S(,S1,57,53, and S4 to construct a distributed
TEE with TEE and non-TEE nodes across multiple racks (three in this figure where SC4,SCp,and SC¢ are located) in a data center. Every rack
has its corresponding security controller (SC) that manages the compute nodes in that rack. Cross-SC communication channels facilitate resource
allocation across racks for higher scalability. In our design (S4), we assume the racks may not be physically co-located in the same data center. Our
design is agnostic of the communication channel (e.g., Ethernet, InfiniBand) between the SCs across multiple data centers.

1) So: Centralized SC connected to nodes managing
devices: In this scenario, the user themselves or via some
untrusted server can connect to a rack-level SC. The SC transfers
the encrypted workload to a CPU node that manages devices.
In this case, the tenant fully occupies nodes behind the SC. The
SC can only connect to a limited number of CPU nodes, as it
intercepts and executes cryptographic operations on all packets
to and from the user. HETEE [22] follows such a design principle
where all the nodes behind SC are connected physically and
located in a single container with PCle switches. The SC executes
remote attestation of the trusted CPU nodes known as proxy
nodes. In secure mode, the SC transfers the encrypted workloads
(GPU kernels and data) from the untrusted server to the proxy
nodes. Proxy nodes then deploy the kernels to their connected
GPUs. After computation, proxy nodes send the results to the
SC. The SC encrypts the results and sends them to the untrusted
server. In insure mode, the SC allows the untrusted servers to
connect directly to the GPUs for performance improvements.

This design does not provide multi-tenancy or virtualization
of devices as the nodes are assigned exclusively to a single tenant.
Scaling is challenging as the SC only connects to a limited
number of nodes inside a rack. It is also not possible to connect
to other racks or nodes of other SCs. HETEE [22] proposes the
nodes (host or proxy node and associated GPUs) behind the
SC to be enclosed inside a physically hardened case that can
prevent physical attackers. Provisioning the GPUs outside the
proxy node is possible. However, such a mechanism requires all
the security mechanisms to be revoked. Such design decisions
and attacker models are impractical, and their limitations make
it infeasible for multi-tenant data centers.

2) Si: Centralized SC connected to nodes with no TEE:
Here, the SC directly connects and manages all the nodes.
This mitigates some of the disadvantages of Sp: a host CPU
can connect to any device, and we can support node-level
virtualization. However, as the nodes do not support TEE, the
devices must be owned exclusively by one tenant, as there is no
memory isolation inside a node. All the setup and access control
is enforced by the SC, which enforces bus-level filtering so that
a tenant cannot access the devices of other tenants.

However, in this design, the SC intercepts all the traffic from the
user and between the nodes. Making them a single point of failure
and hard to scale. The nodes still need to support some form of
identification and secure boot to ensure their integrity. Such a
design also does not allow the multi-tenancy we want to achieve.

3) Sy Semi-centralized SC with TEEs: Here, we consider
a setting where some devices can support TEE while the rest
do not. TEE nodes support memory isolation, attestation, and
sealing on the TEE nodes. The SC is still in charge of managing
the devices and communicating with the user. The attestation
mechanism to verify the integrity of nodes and enclaves can be
offloaded to the trusted SC.

This design solves many of the drawbacks of both S; and S5.
Specifically, it allows tenants to be securely isolated on devices
that support TEE. SC uses bus filtering for the TEE-less nodes.
However, SC still handles the data between the user and the host
enclaves. End-to-end authenticated encrypted channel between
the nodes’ software eliminates the need to trust SC.

4) S3: Decentralized TEEs: This design eliminates the need
for an SC by requiring that all nodes support some hardware
TEE features, such as secure boot, attestation, and memory
isolation. Such nodes enable fully decentralized TEE where the
confidential VMs on the nodes set up the channels between the
nodes (by setting up MMIO and DMA channels). The user can
directly communicate with the node without needing the SC,
eliminating potential bottlenecks. Such a decentralized design
also allows the TEE nodes to be virtualized and assigned to any
host node. TEE on individual nodes will allow the CSP and all
the software stacks to be attacker-controlled.

This TEE design has the most security and scalability advan-
tages compared to the previous three designs and is suitable for
modern multi-tenant data centers. However, such a design has a
strong requirement: hardware TEE features in all the nodes, which
may seem infeasible for many devices, including legacy DSAs.

5) Si: Hybrid Decentralized TEEs: Given the strong
requirements of S3, we can now design a hybrid model of S
and S3. The hybrid design accommodates new and upcoming
TEE-capable DSAs as well as legacy DSAs and other devices
without hardware TEE capability. The TEE-capable devices

can be completely decentralized as S3. Therefore, the enclaves
deployed there can leverage virtualization and scale across many
racks. The SC allocates the isolated multi-tenant units on the
nodes to different tenants who can communicate with these
units without going through the SC. Moreover, we can also
allocate TEE-less devices. As these devices do not have any
isolation or attestation capability, the enclave on the TEE node
communicates through the SC, which provides bus filtering for
the TEE-less nodes. These devices can be connected physically
with the SC. SC acts as the security monitor, communicating the
TEE needs over a secure channel and filtering the traffic to the
non-TEE nodes based on access policies.

B. Observations

Out of the five design decisions we discussed in the previous

section, we chose the last design, S4, as it provides the most
security and functionality suitable for a multi-tenant cloud. Next,
we point out our observations alongside the requirements for the
nodes necessary for such a design choice.
— Observation 1: Modern DSAs are highly configurable, i.e.,
the CSP or hypervisor can push configuration to the DSASs’
firmware. E.g., the MIG partition on NVIDIA A100 [38] allows
reconfiguration (partition size, GPU pass-through, containers),
reconfigurable cache [8] can change caches from private to
shared, etc. Therefore, monitoring data on the bus is insufficient
to determine the local node’s configuration state.

— Requirement 1: A secure/measured boot ensures the

firmware and device configuration are correct. As attacker-
controlled OS/hypervisors can reconfigure a device or flash its
firmware, it is crucial to ensure that the device is initialized from
a safe state. This observation applies to both TEE and non-TEE-
capable devices, as either the user or the SC needs to ensure that
the integrity of the device firmware is maintained before secret
provisioning and does not change later.
— Observation 2: Centralized SC is unaware of the DSAs’
execution due to their asynchronous nature. Therefore, any
misbehaving program on a DSA can manipulate or access the
data of other tenants if the DSA does not implement its own
memory isolation mechanism.

— Requirement 2: Attestation ensures that the DSAs are run-
ning the proper code (also known as the device kernels). Runtime
isolation ensures that the attacker cannot access the memory
of other processes. Trusted path ensures the communication
channel between the host and the device is protected, i.e., the
attacker cannot manipulate the data on the bus. Sealing ensures
that the integrity and confidentiality of the data on persistent
storage (i.e., an SSD) is protected from the attacker.

— Observation 3: Non-TEE nodes do not supportisolated multi-
tenancy without a hypervisor. Therefore, one user must have ex-
clusive access to a non-TEE node behind SC. Moreover, the non-
TEE nodes do not supportencryption to protect the data on the fly.

— Requirement 3: SC must ensure a unique binding from a
TEE node to a set of non-TEE nodes connected to the SC. After
the non-TEE nodes are allocated, no new tenant can be assigned
to them without securely resetting the non-TEE nodes. The SC
must act as the encryption proxy between the TEE and non-TEE

TABLE I: Distributed TEE challenges listed in Sec. III-D and how they
are addressed in our design described in Sec. I'V.

Distributed TEE challenges Mitigation mechanisms

SC + DSA Attestation (Sec. IV-C)
Exclusive control plane access (Sec. IV-B)

Malicious reconfiguration
Persistent safe-state

Bypassing SC Interception of all traffic in SC (Sec. IV-B)
Physical attacker Encrypted traffic (Sec. IV-B1)
Scale-out our scaling evaluation (Tables IV and V)

nodes to ensure that all the data coming and leaving the non-TEE
nodes are authenticated and encrypted.

From these observations, we conclude that to fully integrate
TEE and non-TEE nodes into modern data centers, we need to
carefully design the SC, the communication, and the attestation
protocol to ensure strict security.

C. Overview of Hybrid Architecture (S4) in Data Centers

In this section, we briefly overview our proposal, which adopts
S4 and realizes distributed heterogeneous enclaves running on
CPUs, TEE-capable DSAs, and non-TEE devices. Our proposed
system is built on top of existing data center architecture by keep-
ing the cloud service provider’s management plane (CSP-MP)
unchanged. We assume that MP, software stack (OS, hypervisors,
otherapplications), and data center infrastructure (NIC, switches,
interfaces) are attacker-controlled. The CSP-MP is responsible
for resource allocation/deallocation, load balancing, workload
deployment, scaling, management, etc. Allnodes have ahardware
root-of-trust that can bootstrap the node securely. For TEE-
capable devices, this root of trust is used for remote attestation
to ensure the integrity of the firmware and the enclaves before
the remote users provision secrets to the enclaves. On the TEE-
capable nodes, the security monitor or SM, a high-privileged
trusted entity on the device, enforces certain security proprieties,
isolation, and attestation of enclaves. Therefore, the TEE-capable
nodes support multi-tenancy as these nodes can accommodate
multiple mutually distrusting enclaves. For non-TEE devices,
we need additional trusted hardware in the rack, such as a
security controller (SC). The SC is a low-TCB hardened trusted
entity that can be verified and mediates the trusted path from
a tenant to a device. Enclaves come with a manifest describing
the devices’ allocation strategy along with the required security
properties. Once the resources (TEE and non-TEE) are allocated,
the hypervisors are made aware of such a device by setting up
MMIO and DMA regions. The trusted path from the remote
verifier to the nodes are established in hierarchical way. The
remote verifier firstestablishes akey with the CPU TEE by remote
attestation, then the CPU establishes secure channels to the
associated TEE-capable DSAs. This ensures that all MMIO and
DMA transactions are confidentiality and integrity-protected.

D. Challenges

Although the potential design S4 seems intuitively optimal,
careful security considerations are still required. While moni-
toring data on the bus and secure communication between nodes
are necessary, they are insufficient to determine the local node’s
configuration state. We list five challenges that we must address

TABLE II: Security properties and mechanisms to address them.

Security properties Mechanisms

SC, CPU and DSA HW-root-of-trust
Authenticated encryption

Identity & Attestation
Secure network path and bus
Host memory protection Memory encryption and integrity [39, 40]

DSA memory protection 3D-stacked memory [41, 42], encryption [43, 44, 45]
Tampering SC & non-TEE nodes Tamper-detecting MCUs [46, 47]

for a datacenter-scale distributed TEE. A summary of these
challenges and references to their solutions are listed in Table I.

(1) Malicious reconfiguration: Modern DSAs are highly
configurable: the CSP/hypervisor can configure the DSASs’
firmware. The hypervisors allow pass-through access to DSAs
and can reconfigure their partition size [8], e.g., GPU partitions
(MIG) [38] on NVIDIA A100 and H100.

(2) Persistent safe-state: Correct firmware and configurations
during boot-up do not prevent malicious OS/hypervisors from re-
configuring anode or flashing its firmware later. So, both TEE and
non-TEE DSAs must be initialized from a safe state and stay in a
safe state. Thus, the user or the SC must ensure the node firmware
integrity is maintained before and after secret provisioning.

(3) Bypassing SC: The SC is unaware of the DSAs’ execution
due to their asynchronous nature. Therefore, malicious devices
can attempt to bypass the SC and directly access other tenants’
data. Thus, the TEEs or the SC must mediate all communications
between nodes.

(4) Physical attacker: We must protect the SC, TEE, non-TEE
nodes, and all the communication channels from a physical
adversary.

(5) Scale-out: The ability to scale out must not compromise
security guarantees. For example, if the workload requires
multiple Al accelerators, our proposed design should provide an
easy avenue for scaling.

E. Insights

Measured boot ensures firmware and configuration integrity,

which the SC must verify and communicate to the user prior
to secret provisioning. Remote attestation ensures that the
DSAs are running the correct user-provided kernels. TEE-level
isolation ensures that an attacker cannot access other tenants’
memories on the same node. For non-TEE nodes, the SC is
aware of tenants’ resource allocations. At runtime, SC ensures
tenant isolation by performing bus-level access control to
verify if the accessor is authorized to access the resource. The
communication channel between the nodes is secure, preventing
attackers from manipulating data on the bus.
Physical Attacker. We assume a malicious CSP with full
physical access to all the nodes and data center infrastructure.
Therefore, we require protection against a physical attacker to
ensure that the attacker-controlled CPS can not compromise
the integrity and confidentiality of data and programs. The
individual components, such as the CPU, DSA, SC, and the
communication channel between them, must provide physical
attack protection. Table II provides a set of desired security
properties and the corresponding mechanisms.

(1) CPU. Existing systems such as memory encryption and
integrity protection defend against physical attackers.

(2) DSA. Integrated memory in the DSA-SoC makes physical
attack difficult. For off-core memory, memory encryption and
integrity protection on DSAs can thwart physical attackers.

(3) Non-TEE nodes. The absence of the above mechanisms
makes protecting non-TEE nodes challenging. The SC and non-
TEE nodes are secured in a physical container with commercially
available MCUs that detect physical tampering through pressure
and vibration sensors [46, 47, 48, 49]. Such a mechanism is used
by HETEE[22] and is suitable for our rack topology.

(4) Communication channel. Authenticated-encrypted (AES-
GCM) channels between TEE/non-TEE nodes and SCs prevent
physical attackers as long as the communication endpoints are
inside the CPU-enclave, DSA-enclave, or SC.

IV. SeEcuriTy CONTROLLER (SC)

Our design secures both TEE and non-TEE nodes. The user is
requiredtoallocate at least one CPU-TEE node. Thisis necessary
as our design requires one primary CPU node where the end-
user deploys their job and runs the primary workload software
stack, such as PyTorch for AI/ML. This ensures that an attacker-
controlled OS/hypervisor on the TEE node cannot compromise
the security of the distributed enclave. It is also required that
the non-TEE nodes are not multi-tenant as they lack isolation
primitives within that node. Resource allocation (such as mem-
ory, storage capacity, number of computation cores, etc.) is static
and is decided during the enclave setup. DSAs execute programs,
known as kernels thathave predetermined memory allocation and
do not allow new memory allocation (e.g.,malloc)whileinside
the kernel. The user can define the size for storage or memory
based on the workload requirements. Throughout this paper, we
use the term enclave to define isolated environments either on
CPU (isolated programs or confidential VM) or DSAs that cannot
be manipulated from attacker-controlled software stack such as
OS or hypervisor. Therefore, a programmer statically defines the
memory sizes of each remote enclave in the job manifest.
Setup. The user submits the number, size, and type of each
enclave and non-TEE node in a manifest file (Sec. IV-C), along
with the code to be executed on each enclave and non-TEE
node to the CSP-MP. The CSP-MP allocates the requested
resources and trusted hardware on the rack, sends challenges,
and collects attestation reports from them. The user gets a
combined attestation report with the nodes’ configurations.
After successful verification, the trusted hardware generates and
provisions an enclave-specific channel encryption key to start
the computation. In the following, we discuss how to compose a
rack with both non-TEE and TEE nodes and how to secure them.

A. SC Architecture

SC is a dedicated hardware module that is part of every rack,
connected toall thenodes, and placed in a container along with the
non-TEE nodes connected via PCle. The container is equipped
with physical tamper-detecting micro-controller units (MCUs) to
prevent the physical attacker from accessing the non-TEE nodes.
SC has a hardware root-of-trust capable of performing memory

SC-Hardware boundary =~ ——]
N, . Plain-text i ERT i Encrypted
Q 1
N, In buffer i K. N | i In buffer
Out buffer i i Out buffer ENC,
N; N, [N [N; = SC, : [
I Tamper-detecting MCU | SC + non-TEE node tamper Rack
[} N detecting container \ $]
(= sC, $—PENC,, | Rack,

Fig. 3: A high-level architecture of the SC along with the non-TEE
nodes (N;) and TEE nodes (ENC;). The SC and the non-TEE nodes are
located in a tamper-detecting container with the help of a specialized
microcontroller unit (MCU) [46, 47]. The enclave routing table (ERT)
stores the key and corresponding nodes related to a distributed enclave
workload. All these nodes and the SC container are located in a single
data center rack. The figure also shows the communication link between
two SCs, SC1 and SC,, which could be co-located in the same data center
or across separate geographical locations.

isolation for itself. The SC’s logic is implemented purely in the
hardware (bare-metal) and acts as the TEE proxy for the non-TEE
nodes and provides TEE properties such as isolation and a trusted
path for them. It also ensures that a non-TEE node is allocated to
a single tenant and is not shared with any other tenant or entity
(e.g., CSP). The SC performs authenticated encryption for all
communication between TEE and non-TEE memory using the
shared secret () provisioned during the initial attestation. For
communication between non-TEE nodes, the SC does not per-
formauthenticated encryption;instead, itenforces access control.
The SC checks if a transaction’s source and destination belong to
the same job and, if so, allows it; otherwise, it blocks it. The SC
has two sides for interacting with the nodes in the data center. The
encrypted side is interfaced with the outside world (i.e., the TEE
nodes and SCsin otherracks). The plain textsideisinterfaced with
the local non-TEE nodes confined within the tamper-proof con-
tainer. Both sides have DRAM buffers that are DMA mappable
to either TEE or non-TEE nodes to communicate with the SC.

At start-up, the SC first resets the non-TEE nodes to its
factory configuration and creates locally unique identities (e.g.,
unforgeable PCle physical ids) for them. The SC maintains input
and output buffers for the non-TEE nodes. Since the data in these
buffers are in plain text, the SC enforces isolated access to them.
SC allocates non-overlapping regions of the buffers to individual
non-TEE nodes, as shown in Fig. 3. This ensures that non-TEE
nodes cannot access each other’s plaintext data. To enforce access
control between non-TEE nodes, the SC maintains a special data
structure called an Enclave Routing Table (ERT). The ERT
keeps track of the nodes that are part of the same job. The SC adds
entries to the ERT when one of the non-TEE nodes is allocated
as part of a new job; the SC deletes the entry when either the job
is completed or the CPU-enclave is disconnected or timed out.

B. Enforcing TEE Primitives

1) Setting up and reserving non-TEE nodes: The user of the
distributed enclave submits an enclave manifest that describes

the TEE and non-TEE resource requirements to the CSP-MP. An
example enclave manifest is depicted in Fig. 4. As mentioned
earlier, a job manifest must include a CPU-TEE node where all
the primary software stacks (PyTorch, TensorFlow, Redis client,
Database client, etc.) reside. In our design, such a CPU-TEE
node could be a SEV-SNP-capable AMD CPU that can create
confidential VMs. When CSP-MP allocates non-TEE nodes for a
job, the SC first verifies if the nodes are unallocated by checking
the ERT. If the nodes are available, the SC participates in the
remote attestation process for the job. We describe the remote at-
testation process in detail in Sec. IV-C. On successful attestation,
it programs a job-specific secret key K to the specific row of the
ERT, as can be seen in Fig. 3 that shows two jobs with shared keys
Ki,and K;. After the remote attestation process, the CSP-MP can
no longer tamper with the configuration of a distributed enclave.
These shared symmetric keys are used to encrypt and authenticate
(AES-GCM) all data between the SC and CPU-enclave. Such a
setup mechanism ensures that scaling out the number of DSAs
is independent of the host CPU. Therefore, our proposal can
accommodate an increasing number of devices behind SC as
long as the primary CPU-TEE can dispatch tasks to them.

2) Runtime integrity violation: The tamper-detecting MCU
continuously monitors the physical integrity of the SC enclosure.
The SC and all TEE nodes are reset upon detecting any violation,
and any potential leakage is prevented. The SC is physically con-
nected to the MCU and is part of the remote attestation for a job.

3) Communication: TEE and Non-TEE node: The SC
provides staging buffers (incoming and outgoing buffers) where
datacanbe encrypted and decrypted. For any dataleaving the SC,
the nodes move it to the SC’s buffer, where it is encrypted with
the destination’s key before being sent out. Similarly, any data
entering the SC (i.e., to one of the non-TEE nodes) arrives in the
node’s memory mapped in the SC, where it is decrypted with the
destination key. Fig. 3 shows the details of this mechanism. Every
message that arrives at the encrypted side (incoming buffer)
contains the data, source, and destination node ID. The messages
areencrypted and authenticated and can be decrypted and verified
by the shared key in the ERT. The connection between the TEE
nodes and the SC can be over PCI Express or Ethernet (e.g.,
RDMA over Converged Ethernet - RoCE). For both, we encrypt
all the packets with the shared key between the CPU-enclave
and SC established during the initial remote attestation. We
assume the primary workload software stack, such as PyTorch
for Al or the Redis client for in-memory databases, runs on the
CPU-enclave (such as an AMD SEV-SNP confidential-VM).

Typically, the DSAs are memory mapped, i.e., the virtual
address space of the DSA memory is mapped to the host memory
address space. In this way, the host CPU can access the DSA
memory as if it is part of its own memory. From the TEE node
to a non-TEE DSA node behind the SC, the communication
goes through the SC and gets decrypted or encrypted based
on the direction of the communication. A small change in the
device driver is required to ensure that all the DMA messages
are intercepted and copied to the SC’s incoming buffer when
a CPU-TEE sends data to a non-TEE DSA over SC. Similarly,
the SC’s outgoing buffer is mapped to the CPU-TEE’s memory,

where the enclave on the CPU node can access the encrypted data.

As a demonstration, we have three use cases to show the
feasibility of communication over the SC: accessing large storage,
in-memory databases, and Al. We provide more details of our
experimental set-up in Sec. VI-C. The CPU-TEE communicates
withthe SSD and NPU (Al accelerator) over the SC for storage and
Aluse cases. SSD storage address paces and NPU memory space
are DM A mapped to the SC’s incoming and outgoing buffer at the
plan text side (refer to Fig. 3). The SC’s incoming and outgoing
buffers on the encrypted side are mapped to the CPU-TEE. The
SEV-VM copies the data (either file system data for storage
workload or tensor/Al model for Al workload) to the incoming
buffer on the SC’s encrypted side, which is then decrypted by the
SC and placed on the incoming buffer on the SC’s plain text side.
Similarly, the data from the DSA is copied to the out buffer on
SC’s plain text side, which is then encrypted and placed in the out
buffer on SC’s encrypted side, which is mapped to the CPU-TEE.

4) Communication: Non-TEE nodes behind SC: Unlike
the communication between the TEE nodes, where the SC uses
encryption to isolate traffic from the cloud provider, the SC uses
the ERT to enforce the access control between the non-TEE
nodes. The nodes communicate using the SC as an intermediary
for performing data copies via an isolated staging buffer in the
SC, where the non-overlapped part of the buffer is DMA mapped
to the nodes. If the non-TEE nodes are allocated to the same
enclave manifest, they share the same rows in the ERT. The ERT
entries ensure that only the nodes of the same job (e.g., Ny and N>
inFig. 3) can setup shared DMA buffers on SC. Once configured,
the nodes can communicate over the shared DMA region.

5) Communication: Non-TEE nodes behind different SCs:
If a job requires nodes distributed across multiple SCs, the local
SC communicates with a remote SC over a secure channel using
the job-specific key K to encrypt and decrypt the data. This is
feasible since both SCs receive K during the setup and have
valid ERT entries. Keeping a single key for the local and remote
SC ensures that data encryption and decryption occur only once
while communicating between a TEE and a non-TEE node. The
local SC forwards all the encrypted data from the TEE node to
the remote SC, where it is decrypted. Similarly, the data from a
non-TEE node gets encrypted by the remote SC and forwarded
to the TEE node via the local SC. Note that SCs do not have to
synchronize ERT entries or key material.

However, the key difference is communicating between two
non-TEE nodes across two different SCs. Typically, the communi-
cation between two non-TEE nodes behind the same SC does not
involve any cryptographic operation, only access control. How-
ever, in this case, the data from a non-TEE node will be encrypted
and authenticated before sending it to the remote SC, as the
malicious CSP can observe and manipulate the databetween SCs.

6) Releasing node: To terminate a job, the tenant’s primary
CPU enclave sends a termination command to the SC. The SC
power resets the non-TEE nodes in that specific job and removes
the mapping from ERT. Once reset, the SC notifies the CSP-MP
that the node is available for future allocations.

7) Connecting TEE nodes: Unlike non-TEE nodes, TEE
nodes do not depend on an SC as the local SM sets up the

{ "Job": "JIL", "Version": "X.YZ",
"Public Key": Ox12ff..,
"TEE-Resource": [
{"Type": "CPU", "Cores": 4, "Memory": "64G"},
{"Type": "NPU", "Cores": 8, "Memory": "32G"}]
"Non-TEE-Resource": [
{"Type": "SSD", "Capacity": "2T"}]

Fig. 4: Example manifest file where the distributed enclave developer
specifies the number, size, and type of resource requirement for both
TEE and non-TEE nodes.

enclaves for tenants, and on-device TEE primitives ensure
that the enclaves on the same node cannot access each other’s
memory. We use the hardware root of trust and remote attestation
of the TEE nodes to ensure that such isolation is trustworthy.
Globally, we use authenticated encryption to protect data leaving
the enclave as shown in previous work [11]. Two CPU enclaves
can communicate by establishing a key by mutual remote
attestation and using this key to encrypt and authenticate all
data. Such communication can be done over the socket interface.
Communication between a CPU enclave and a DSA enclave
can be achieved by existing approaches such as GPU [11, 50],
NPU [51], FPGA [14], etc, with different confidential VM such
as AMD SEV [32], ARM CCA [52, 53], Inte]l TDX [29].

C. Remote Attestation

Enclaves distributed over TEE and SC-backed non-TEE nodes
require distributed attestation. Therefore, we ensure that the indi-
vidual attestation reports from the nodes (code and configuration)
and the combination of attestation reports are correct.

1) Enclave Manifest: A manifestin Figure 4 describes a user
job where the developer specifies the number, size, and type
of each CPU/DSA enclave and non-TEE node alongside the
code to be executed on each enclave and non-TEE node. In the
example manifest (Figure 4), the developer allocates both TEE
and non-TEE nodes. The CPU and neural processing unit (NPU)
are TEE-capable devices, whereas the SSD is non-TEE. For all
these resources, the developer also specifies the amount of cores,
memory, or capacity requirements. The remote verifier uses the
manifest to verify the combined attestation report, which ensures
that the allocations of the enclaves and non-TEE node are correct.

2) Attestation Process: The SC initiates the remote
attestation. Given an enclave manifest, the SC first gets an
allocation of the resources (physical nodes) from the CSP-
MP. Then SC produces the attestation report for the CPU,
DSA enclaves, and non-TEE nodes as follows:

SC Attestation. The SC generates a measurement of its firmware
and version number signed with its root key to show the SC’s
authenticity. If the job requires non-TEE nodes across different
racks, the primary SC performs the attestation by communicating
with the SCs in each racks and performing mutual attestation.
Thus, the primary SC can gather the attestation report of the
nodes from other racks from the corresponding rack SC.
CPU-enclave Attestation. The SC uses the existing attestation
mechanism supported on the CPU to collect the enclave
attestation reports.

DSA-enclave Configuration Attestation. Each DSA has
hardware support for generating an attestation report that
includes configuration information and signing it with its root
key. The SC simply collects the attestation reports.

Attestation of non-TEE Nodes. The attestation process
involves resetting the non-TEE nodes to factory configurations
and destroying any configurations from the previous tenant.
Since non-TEE nodes do not have hardware support for this, the
SC power-resets the device over a physical interface, forcing it to
load factory configurations and firmware. The MCU responsible
for detecting physical tampering [47] of the SC and non-TEE
nodes, provides proof of the MCU secure boot and continuous
monitoring of the physical tampering [46, 54]. The SC appends
this proof to the combined attestation report for the job.

End to End Attestation flow. After receiving the enclave man-
ifest from the user, the SC communicates with the corresponding
CPU and DSA enclaves as described above and collects the
attestation reports—therefore solving the attestation challenge
of aggregating distributed attestation reports. The SC then sends
the aggregate report to the remote verifier. The verifier checks
the verification report of the primary SC to ensure that it is
communicating with a genuine SC. Only then does the verifier
check individual reports using hardware-specific attestation
verification and ensure that the provisioning was done according
to the manifest. Then, the verifier and the SC set up a shared key
(K) over a secure channel. Finally, the SC populates the ERT
entry with the shared key and communicates it to the TEE nodes
over a secure channel based on individual attestation reports.

D. Resource Allocation Strategy

We only expect the enclave resources to be static, typically
for larger workloads in the cloud (e.g., an AWS F1 instance
has 1 VM and 1 FPGA). This is also reflected in the enclave
manifest (Fig. 4) that dictates the resource requirement of the
distributed enclave. Our current design allows the cloud provider
to manage dynamic resource management for non-enclave nodes
not committed to the enclave. We can add support for dynamic
scaling of enclave resources (e.g., attaching a new GPU); this
will require a new attestation, after which we can update the ERT.

V. SECURITY ANALYSIS

We analyze the security of our design in the presence of
different adversary capabilities.

A. Attack from Untrusted CSP-MP

CSP-MP can violate the job manifest by allocating the
wrong enclaves and non-TEE nodes, potentially with outdated
and possibly compromised firmware. The remote verifier will
detect such violations via the attestation report from enclaves.
TEE nodes’ local memory isolation prevents the CSP-MP or
hypervisor from accessing/modifying the enclave’s private
memory. Authenticated encryption of data leaving a trusted
enclave prevents compromised physical devices, e.g., switches
added by CSP-MP, from intercepting traffic, triggering rogue
DMA/RDMA, and injecting interrupts into nodes. Enclaves’
local SMs prevent CSP-MP from allocating the same enclave to

two different tenants or jobs. The SC locks a non-TEE node to a
job (using the ERT) during the remote attestation. Authenticated
encryption of databetween SC across differentracks also prevents
malicious CSP from accessing and/or manipulating the data.

B. Malicious Configurations

Untrusted hypervisors or CSP-MP can push malicious
configurations to only the TEE nodes, where the remote verifier
can verify the nodes’ SM configurations and their integrity via the
attestation report. For non-TEE nodes, the SC resets them to their
safe factory configuration before allocating them to an enclave.

C. Attacks via Non-TEE Nodes

All the access from the non-TEE node goes through SC’s
ERT to prevent a malicious non-TEE node from accessing
SC’s buffer and reading other nodes’ plain text data. ERT also
prevents non-TEE nodes from communicating with each other
(over MMIO/DMA) unless the enclave manifest explicitly
allows communication. ERT stores all keys used to encrypt
data leaving the non-TEE nodes. Malicious non-TEE nodes
cannot read out the ERT, tamper with the ERT, or compromise
the SC’s execution as SC is isolated and inaccessible to all
other entities. The non-TEE nodes can try to send malicious
MMIO/DMA requests to non-TEE nodes behind other SCs or
other TEE enclaves. This does not compromise confidentiality
and integrity, as all data is protected with AES-GCM.

D. Physical Attacker

The tamper-resilient MCU on the SC container prevents the
attacker from probing non-TEE nodes; communications between
non-TEE nodes and the SC never leave the SC boundary. Power
resetting SC and non-TEE nodes will destroy their internal states
and not leak any data. The TEE node’s memory encryption
and integrity protection safeguard memory. A physical attacker
cannot see or modify authenticated-encrypted DMA data
between TEE nodes or messages between non-TEE nodes from
different SCs. The physical attacker cannot leak data from the
previous tenant by disconnecting TEE nodes from the SC and
allocating non-TEE nodes, as all data leaving the SC is protected
with authenticated encryption.

E. Security against Side-channels

Our solution does not prevent existing side channels, such as
the one presentin the CPU or GPU micro-architecture. Our design
cannot prevent side channels from higher-level applications, e.g.,
secret-dependent communication between nodes. However, we
will emphasize that SC can be combined with existing side chan-
nel mitigation techniques to reduce the attack surface. Therefore,
addressing the side channels is out of the scope of this paper.

VI. IMPLEMENTATION AND EVALUATION

Evaluation Setup. Table III describes the hardware platforms,
OS, runtime, and drivers used in our evaluation. Our evaluation
has four components: the CPU TEE, the synthesized SC
hardware, an Al accelerator (NPU) that serves as a non-TEE
device, and cycle-accurate simulation of SSDs that serves as
both TEE and non-TEE nodes. In the following, we summarize

TABLE III: Evaluation platforms used in our SC experiments.

Evaluation = Hardware OS/RT/Driver

CPU TEE AMD CPU with SEV-SNP, 256GB DRAM Ubuntu 20.04 + KVM

SC 870MHz 28 nm CMOS ASIC -

Al acc Huawei Ascend 910A NPU, 32 core Ascend driver + runtime
SSD sim Intel CPU, 128 GB DRAM Ubuntu 20.04 + DRAMSim3

Area

0.46 mm?
Frequency
870 MHz
Technology

ERT + ACL Logic
AES

Engine
[y
s

IR EREN
SRAM Blocks

28 nm

SC Chip

Fig.5: Floor plan of the synthesized SC chiplet with ERT, SRAM block,
and the AES-GCM engine. The figure shows a high-level SC chip design
with individual SC chips connected over a fast optical bus. The bus also
connects the SC to the TEE and non-TEE nodes.

our implementation of the Security Controller and present our
evaluation findings.

A. Security Controller (SC) implementation

The SC prototype has two units: the control and the data plane.
The control plane is responsible for adding/removing nodes,
remote attestation of enclaves, and spawning VMs, and is imple-
mented on an FPGA using the Vitis cryptography library [55].
The data plane is responsible for data streams, cryptographic
operation, and access control (Fig. 3) and is implemented and
synthesized asan ASIC. Due to performance criticality, we imple-
ment the SC chiplet data plane prototype in RTL (~ 2.5 KLoC of
SystemVerilog code). We synthesize our SystemVerilog RTL im-
plementation on a high-k metal gate (HKMG) 28 nm CMOS tech-
nology, corresponding to amulti-VT standard cell library (supply
voltage of 0.8 V, estimated in typical-typical (TT) corner). Multi-
ple chiplets are connected over an optical demultiplexing-based
bus. We only synthesize the SC chiplet as the demultiplexer unit
on the bus is acomplex analog IP, and an existing design has near-
zero demultiplexing latency (12.5 ps) [56]. Fig. 5 shows a synthe-
sized SC prototype chiplet that comprises one AES-GCM engine,
64 KB (2 x 32 KB for in and out buffer, ref Fig. 3) SRAM, and the
ERT. The ERT is a 256-bit wide hardware lookup table with 1024
node entries. Our prototype can be interfaced with the memory
controller and DMA engine to DMA data in and out of the SC.

B. SSD TEE Node

Simulator Base Model. The base SSD simulation is based on
SimpleSSD [57], a state-of-the-art cycle-accurate full-system
simulator that closely simulates commercial SATA and NVMe
SSDs. SimpleSSD provides two simulation modes: i) standalone
for quick prototyping on the SSD hardware and firmware model
and experimenting with trace-based workloads, and ii) full-
system simulation based on GemS5, a popular CPU micro-
architectural research platform. However, the latter is only used
for functional validation due to the slow (a few KIPS) simulation
rate. We evaluated the SSD workloads in the standalone mode

10

& TeE

iy Non-TEE <:>Secure channel

Fig. 6: Three end-to-end workload evaluations with SC.

for performance and used the full-system simulation to ensure
that our modifications are valid and can boot Linux correctly.
SimpleSSD simulates all the IO and management operations and
provides a block storage device to boot Linux and execute 10 op-
erations. Itcomputes the timing of each IO and management oper-
ation separately based on the timings of the memory chip (DRAM
and NAND flash) and ISA (CPI of the SSD controller core).
SSD Hardware Changes. To enable SSD-enclave, we
implement several hardware changes on the base model. An
SSD-enclave comprises a contiguous NAND physical address
range known as namespace and the isolated DRAM cache to
accelerate read-write operations. We implement a hardware
look-up table (LUT) that contains the mapping between the
namespace id, the associated CPU-enclave id, and the AES-
GCM key for authenticated encryption. This LUT can only be
accessed by the privileged SSD firmware where all the access
control logic is implemented. The access control unit (ACU) is a
hardware compactor module that checks the enclave or TEE VM
ID in the DMA transaction and checks it with the LUT entries.
Based on the comparison result, ACU permits or rejects DMA
operations. As all the hardware checks are done before the 10
operation hits the DRAM cache and all page translations, our
mechanism does not require any changes in the SSD controller;
therefore, the SSDs’ performance -characteristics remain
unchanged. All the DMA transactions are encrypted/decrypted
by AES-GCM implemented on the SSD firmware. To implement
Remote attestation (RA), we use an off-the-shelf chip for secure
provisioning and measured boot. We store a root key in the RA
to emulate the manufacturer’s key provisioning. During startup,
the RA executes a measured boot of the SSD firmware image.
The measured boot results from the PCR banks are signed with
the root key and used as a measurement report.

C. Cloud-Centric Workload Design

We evaluate our design on three different workloads that we
design that are representative of cloud deployments.
Evaluation Workloads. We conduct three experiments with
real-world cloud-focused workloads using an AMD SEV VM as
the CPU enclave shown in Fig. 6. The SEV VM is the primary
host node that the remote user accesses (e.g., over ssh). These
three different workloads stress different devices and different
parts of the system, as described in the following:

@ Storage intensive workload. The SEV VM accesses a file
system on a non-TEE SSD node behind SC. This emulates
storage-intensive workloads such as database accesses, reading
large model files from SSDs for AI/ML, etc.

@ In-memory database workload. The SEV VM accesses a
Redis server, a large in-memory database server that serves read

and update queries on in-memory objects. The Redis server is a
non-TEE x86 node behind the SC.

® AI/ML workload. The SEV VM gets inference data from an
SSD that provides DMA encryption (via a hardware AES-GCM
engine that encrypts all DMA traffic between the host and the
SSD) and runs inference workload on a non-TEE NPU: Atlas 200
DK [58](2 core Ascend 310 SoC + ARMv8 host), behind SC.

Currently, direct PCle devices (Ascend NPU) are incompatible
with AMD SEV VMs due to encrypted DMA addresses [59, 60]
that the devices are unable to access; however, SSDs are
compatible with VirtIO.

Evaluation Methodology. We run these three experiments as
the following:

® We use the FIO [61], a well-known Linux-based file bench-
mark. We evaluate with six FIO workloads (refer to Fig. 7) over
4K block size. FIO on the SEV VM produces two IO traces: sub-
mission and completion, which show when the IO commands are
submitted and completed. The submission traces are submitted to
the synthesized SC to account for the cost of AES-GCM and ac-
cess control check. The output traces from the SC are then used by
the SSD simulator. Theresulting trace is then sentback to the SEV
VM viathe SC, compared to the completion trace as the baseline.

@ We use Yahoo! Cloud Serving Benchmark [62] to run Redis
on different database configurations (R: record size, and O: num-
ber of read/update operations). The Redis client running on an
AMD SEV VM generates the IO traces (database query and sub-
mission time), which are firstencrypted and then sent to the SC for
decryption and access control check. Then, SC passesitto aRedis
server, and the resulting data is sent to the SEV-VM through SC.

@ The ImageNet data sets are read from our TEE-enabled SSD
simulator from the SEV VM and sent to a non-TEE Atlas 200
DK to run Resnet-34 and Resnet-50 behind SC. The inference
results are then sent back to the VM over SC. We use ResNet-34
and ResNet-50 with batch sizes 1 and 16.

D. SC'’s Effect on Workloads

The synthesized SC prototype runs at 870 MHz, and its end-to-
end latency is 1.15 ns. A single SC chiplet transfers 16 Bytes/cy-
cles, giving it a practical throughput of 12.96 GB/s. For compari-
son, 100GbE Ethernet has a theoretical throughput of 12.5 GB/s.
SC Scaling Performance. Tables IV and V show the SC scaling
for real-world Al inference workloads running on Ascend nodes
and FIO benchmark on SSDs, respectively. For ResNet-34 with
batch size = 1, the Al core takes 1.24 ms/image and can be
saturated with a data rate of 133.88 MB/s from a CPU-enclave,
assuming an average 170 KB JPEG image in the ImageNet
dataset. Therefore, a single SC chiplet can handle concurrent 90
CPU-enclaves streaming image data. However, the number of
connected nodes is limited by the available PCle lanes. Adding
jobs requires sending the pre-trained models to the NPU, which
is expensive but a one-time cost. A single SC chiplet can add
31.85 jobs/sec of VGG-16, the largest model we evaluated (380
MB), without any performance degradation. For SSDs, we ran
sequential and random read-write FIO benchmarks and observed
up to 117 concurrent Intel 535 SSDs.

11

TABLE IV: SC Scaling with AI workloads on Ascend 910 NPU.
Speed: single image inference time (ms) for a given batch size (B) and
resolution (Res), saturation size (S): data rate (MB/s) from a CPU-
enclave that saturates an Al core (using ImageNet dataset). Based on S,
we calculate the number of concurrent Ascend NPU nodes (N) that a
single SC chiplet can serve.

Al'models B/Res Speed/S N | Almodels B/Res Speed/S N
1/224 1.24/133.88 90 | RetinaNet 1/800 30.68/5.41 2236

ResNet-34 8/224 6.13/215.6 56 |VGG-16 1/300 6.63/25.04 483
16/224 11.82/224.72 53 | UNet 1/572 23.48/7.07 171
1/224 1.91/86.91 139 1/256 3.75/11.27 273

ResNet-50 8/224 10.87/122.18 99 | YOLOV3 1/416 7.71/21.53 562
16/224 24.67/107.67 112 8/256 19.45/68.28 177

TABLE V: SC Scaling with SSD workload for SSDs running FIO
benchmarks sequential read/write (S-RW), and random read/write (R-
RW) with speed (MB/s) and number of concurrent SSD nodes (N).

S-RW R-RW
SSD Speed N Speed N
Intel 700 400 G 362.75 33 33511 36
Samsung Z-SSD 400G 394.00 30 3836 31
Samsung 983DCT 1.92T 352.02 34 3557 34
Samsung 850Pro 256G 286.48 42 2798 43
Intel 535 240G 120.23 100 1029 117

g 6
E45
2s | | 2 ARNRNR
SR I | BRER
X
$$Q\ < 5 & \r@\\\\@/\\\@
< % ?~ Q~Qﬂ~*\ b";\ &z;\ Sb‘ & &b&/& Q®®
M ro &\ @\ NS5
O/O\ 0 %é@\ ,s Q@.Ca
B Redis /\QQQ@&/\Q‘%& N \@ /\ \“\ Q@ S
B Ascend ‘4~$ Y

Fig. 7: Overhead of end-to-end SC evaluations The figure shows the
overhead of three SC evaluations as depicted in Fig. 6.

Initialization and Attestation. We evaluate the attestation of
SC, TEE, and non-TEE nodes from the SC-FPGA prototype. The
CPU-enclave are implemented as secure-boot-capable Fedora
VMs running on KVM. Upon receiving an enclave manifest (in
a KVM dumpxml format) from the SC, the hypervisor on the
CPU node creates a new VM. After the confidential-VMs boot,
SC collects the signed secure boot traces (~245 KB) from the
SW-TPM of the VMs and DSAs. For key exchange, the SC and
the nodes use the well-known SIGMA protocol [63].

End-to-end Workload Evaluation Results. The results are
shown in Fig. 7 for three end-to-end SC evaluations in Sec. VI-C.

@ FIO Benchmark: In the file system experiment involving
the FIO bechmarking tool, for a single sequential read-write
and random read-write over 4K blocks, SC and AES-GCM in
the SEV VM introduce latency overheads of 1.84% and 1.94%,
respectively. However, 10 requests are queued from the CPU
and dispatched in bursts and are 10.237 ps and 6.607 ps apart
for sequential and random read-write benchmarks. A single 4K
block incurs 3.585 ps latency at the SC for access control and
AES-GCM. Therefore, 8 10 requests (for a 32K SC buffer) can
be pipelined to a single SC chip to hide the latency completely.

@ Redis: We evaluated the effect of SC on read and update query
latency in three sets of parameters. We use the default record
size, which is 1KB. We ensure that the number of operations
(O) is large enough, i.e., >10x the record size (R) to cover all
records. We use the default Zipfian distribution to generate the
IO requests. We observe that, on average, SC introduces 3.6%
and 4.37% overhead in the read and update query latency.

®@ AI Workload: In the combined evaluation with TEE-enabled
SSD and non-TEE NPU, we use both devices without SC as the
baseline. Then, we calculate the additional latency introduced
by the TEE SSD, SEV VM’s AES-GCM, and SC’s operation.
Such a low overhead is expected, as the NPU’s inference time
is dominant. E.g., we observe a maximum of 5.3% overhead
for ResNet-34 with batch size 16, where the end-to-end timing
is dominated by the NPU (11.76 ms) compared to the SSD
(87.0411s) and SC (11.28ns).

VII. RELATED WORK

Existing solutions [64, 65] deployed in production assume a
trusted CSP and only protect against a software attacker executing
asamalicious tenant. In contrast, we focus on a stronger adversary
model: an untrusted CSP and a physical attacker.

Device TEEs. Prior works that enable TEEs on DSAs such as
GPU [11, 66, 50, 67, 68], FPGA [14, 69, 70, 71], NPU [72], and
in-storage execution [13] focus solely on creating enclaves on the
DSAs isolated from the untrusted software. Some DSA-TEEs
additionally protect against a physical adversary. The DSAs
are connected to a single physical host that may be TEE-
capable. The only known commercially available DSA-TEE is
NVIDIA’s H100 [12], which enables in-GPU isolated instances
(MIG [38]) using proprietary GPU firmware. Additionally, prior
works [73,74,75, 76] use cryptographic primitives for the cloud.
Heterogeneous TEE. SGX-FPGA [77] proposes a custom
FPGA enclave connected to an SGX enclave over an encrypted
channel. Similarly, HIX [50] enables shared memory communi-
cation between a GPU enclave and an SGX enclave using HIX
trusted driver. In Hector-V [78], during boot time, CPU-SM
configures an access control for peripherals on the AXI4-lite bus
to drop requests coming from untrusted code. vTEE [79] uses
micro kernel and p2p network to connect heterogeneous device.
Existing proposals [19, 20, 21] extend CPU-TEE protection
by leveraging MMU to protect MMIO devices and perform
bus-level isolation since devices are physically connected to a
TEE host. Our solution is compatible with these device-TEEs
but does not require the devices to be directly connected to
CPU-TEE hosts. We use the insights from the above proposals
to build the TEE-support for Al accelerator and SSD by adding
protection units (ACU, FMT, MPE) and relying on security
monitors. Our SC-based access control for distributed settings
over a network mimics the bus-level filtering for a centralized
setting where the CPU and devices are connected to a bus.

Distributed TEE. HETEE [22] assumes non-TEE devices and
hosts are connected to a centralized security controller over
a PCle switch in a physical attack-proof container, limiting
its scalability to a single rack and ~ 60 nodes. In contrast, we
carefully avoid a centralized SC design that causes bottlenecks

12

in HETEE. Unlike HETEE, we allow multi-tenancy on TEE
nodes. Furthermore, the SC has to perform AES-GCM for all
data between 60 nodes. Hence, they employ trusted proxy nodes
to distribute the cryptographic operations evenly. We avoid
this problem by protecting the non-TEE nodes with the SC’s
access-control checks, and AES-GCM is only required when
communicating with TEE nodes.

Commercial Confidential Cloud Solutions. Several
CSPs offer accelerators as a unit [80, 81] or as a packaged
service [82, 83]. Many cloud provider provides CPU-based TEEs
based on Intel SGX, Intel TDX, and AMD SEV [15, 16, 17, 84],
and hypervisor [18].

Trusted I0. Upcoming PCle features enable mechanisms to
connect CPU-TEEs with DSA-TEEs. Specifically, TEE Device
Interface Secure Protocol (TDISP) for PCle-6 enables TEEs on
processors to connect to TEE-enabled PCle DSAs [85]. Integrity
and Data Encryption (IDE) on PCle-5 encrypts, and integrity
protects PCle traffic on processors and DSAs [86]. The adoption
of these PCle extensions as TDX-Connect for Intel TDX, SEV-
TIO for AMD SEV-SNP, Device Assignment (DA) for Arm CCA,
and IOPMP for RISC-V allows these TEE-enabled DSAs secure
direct access to TEE memory on processors [87, 32, 88, 89].
These technologies allow a single CPU node to connect to a
TEE-enabled DSA node securely. For example, with SEV-TIO,
a TEE-enabled DSA connected to an SEV-SNP VM can directly
access the VM’s memory. Here, PCle IDE encrypts, and integrity
protects all traffic between the SEV-SNP VM and the DSA, elim-
inating the need for the bounce-buffer-style software encryption
we propose. However, this is only feasible if the DSA is directly
connected to the SEV node. Therefore, we need to address the
challenges in a distributed setting that we consider. Single-node
performance will improve when nodes with these technologies
are available in data centers. However, the security principles and
insights we outline in this paper will still be required to deploy
these technologies securely at the datacenter scale. CXL and
all its variants, CXL-mem, CXL-cache, and CXL-IO, similar to
PCI-E, is single root,1i.e., there can be only one host controller. In
contrast, our proposal allows arbitrary scaling with the help of SC.
CXL has similar security mechanisms as the PCI-E IDE standard,
i.e.,end-to-end encrypted transmission between hubs [90], which
trusted motherboard/chipset manufacturers can enable. Detailed
security analysis and design with CXL support is beyond the
scope of our paper and requires independent exploration.

VIII. CoNCLUSION

We propose a data center design with enclaved execution
guarantees for TEE and non-TEE devices, scaling across nodes
and future-ready for TEE devices. We show that the performance
costs of such a design are modest and can be reduced further with
fine-tuning. We envision that our insight will serve as guiding
principles for cloud-scale solutions for confidential computing
beyond CPU execution.

REFERENCES

[1] NVIDIA, “Nvidia A100 GPUs power the Modern Data
Center.”

https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/

[2] S. Yesil, M. M. Ozdal, T. Kim, A. Ayupov, S. Burns, and
0. Ozturk, “Hardware accelerator design for data centers,”
in IEEE/ACM ICCAD, 2015.

[31 T. J. Ham, L. Wu, N. Sundaram, N. Satish, and
M. Martonosi, “Graphicionado: A high-performance and
energy-efficient accelerator for graph analytics,” in IEEE
MICRO, 2016.

[4] run.ai, “Keras Multi GPU: A Practical Guide.”

[5] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini:
A Computation-Centric distributed graph processing
system,” in USENIX OSDI, 2016.

[6] M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based
in-line accelerator for memcached,” IEEE Computer
Architecture Letters, vol. 13, no. 2, pp. 57-60, 2013.

[7] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau,

and J. Xu, “Multi-tenancy in cloud computing,” in IEEE

SOSE, 2014.

M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and

J. Emer, “Leap scratchpads: automatic memory and cache

management for reconfigurable logic,” in ACM/SIGDA

FPGA, 2011.

Intel, “Intel software guard extensions,”

https://software.intel.com/content/www/us/en/develop/

topics/software-guard-extensions.html.

[10] AMD, “AMD SEV-SNP,” https://www.amd.com/system/
files/TechDocs/SEV-SNP-strengthening-vm-isolation-
with-integrity-protection-and-more.pdf.

[11] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted
execution environments on gpus,” in USENIX OSDI,2018.

[12] “NVIDIA Hopper Architecture In-Depth,”
https://developer.nvidia.com/blog/nvidia-hopper-
architecture-in-depth/, 2022.

[13] L. Kang, Y. Xue, W. Jia, X. Wang, J. Kim, C. Youn, M. J.
Kang, H. J. Lim, B. Jacob, and J. Huang, “Iceclave: A
trusted execution environment for in-storage computing,”
in I[EEE/ACM MICRO, 2021.

[14] M. Zhao, M. Gao, and C. Kozyrakis, “Shef: shielded
enclaves for cloud fpgas,” in ACM ASPLOS, 2022.

[15] Microsoft, “Azure confidential cloud - protect data in use
— microsoft azure,” https://azure.microsoft.com/en-us/
solutions/confidential-compute/.

[16] Google, “Confidential Computing — Google Cloud.”

[17] IBM, “Confidential computing for total privacy assurance
—-IBM.”

[18] Amazon, “Aws nitro enclaves - create additional isolation to

further protect highly sensitive data within ec2 instances,”

https://aws.amazon.com/ec2/nitro/nitro-enclaves/.

M. Schneider, A. Dhar, I. Puddu, K. Kostiainen, and

S. Capkun, “Composite enclaves: Towards disaggregated

trusted execution,” JACR CHES, 2022.

R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig,

M. Klimmek, A.-R. Sadeghi, and E. Stapf, “CURE: A

security architecture with customizable and resilient

enclaves,” in USENIX Security 21,2021.

[21] J.Jiang,J.Qi, T. Shen, X. Chen,,S.Zhao, S. Wang, L. Chen,
N. Zhang, X. Luo, and H. Cui, “Cronus: Fault-isolated,

(8]

(9]

[19]

[20]

13

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

secure and high-performance heterogeneous computing
for trusted execution environments,” in ACM/IEEE Micro,
2022.

J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao,
Z. Wang, Y. Zhang, J. Ying, L. Zhang et al., “Enabling
rack-scale confidential computing using heterogeneous
trusted execution environment,” in /JEEE S&P, 2020.

N. Alachiotis, A. Andronikakis, O. Papadakis, D. Theodor-
opoulos, D. Pnevmatikatos, D. Syrivelis, A. Reale, K. Katri-
nis, G. Zervas, V. Mishra ef al., “dredbox: A disaggregated
architectural perspective for data centers,” in Hardware
Accelerators in Data Centers. Springer, 2019, pp.35-56.
S. Legtchenko, H. Williams, K. Razavi, A. Donnelly,
R. Black, A. Douglas, N. Cheriere, D. Fryer, K. Mast, A. D.
Brown et al., “Understanding Rack-Scale disaggregated
storage,” in HotStorage, 2017.

Fungible, “PCle device disaggregation: Fungible, enabling
hyperdisaggregation of compute and storage resources
across data center scales,” https://www.fungible.com/
technology-showcase/pcie-device-disaggregation/, 2021.
K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch, “Disaggregated memory for
expansion and sharing in blade servers,” ACM SIGARCH
computer architecture news, vol. 37, no. 3, pp. 267-278,
20009.

R. Lin, Y. Cheng, M. De Andrade, L. Wosinska, and
J. Chen, “Disaggregated data centers: Challenges and
trade-offs,” IEEE Communications Magazine, vol. 58,
no. 2, pp. 20-26, 2020.

S.-Y. Tsai, Y. Shan, and Y. Zhang, “Disaggregating
persistent memory and controlling them remotely: An
exploration of passive disaggregated Key-Value stores,” in
USENIX ATC, 2020.

Intel, “Intel trust domain extensions (intel tdx),”
https://www.intel.com/content/www/us/en/developer/
articles/technical/intel- trust-domain-extensions.html.
ARM, “Arm confidential compute architecture (ARM-
CCA),” https://www.arm.com/why-arm/architecture/
security-features/arm-confidential-compute-architecture.
V. Costan and S. Devadas, “Intel sgx explained.” JACR
Cryptology ePrint Archive, vol. 2016, no. 086, pp. 1-118,
2016.

AMD, “AMD SEV-TIO: Trusted I/O for Secure Encrypted
Virtualization,” March 2023.

M. Schneider, R. J. Masti, S. Shinde, S. Capkun, and
R. Perez, “Sok: Hardware-supported trusted execution
environments,” arXiv preprint arXiv:2205.12742,2022.
M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted
execution environment: what it is, and what it is not,” in
2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1. IEEE,
2015, pp. 57-64.

N. S. Agency, “U.S. government protection profile for sepa-
ration kernels in environments requiring high robustness,”
https://www.niap-ccevs.org/pp/ppskpphrv1.03.pdf, 2007.
Intel, “PCI Express Device Security Enhancements -
pcie-device-security-enhancements.pdf,” 2018.

https://www.run.ai/guides/multi-gpu/keras-multi-gpu-a-practical-guide
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://cloud.google.com/confidential-computing
https://www.ibm.com/cloud/smartpapers/confidential-computing-for-total-privacy-assurance/#protect-sensitive-data-in-use
https://www.ibm.com/cloud/smartpapers/confidential-computing-for-total-privacy-assurance/#protect-sensitive-data-in-use
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://www.fungible.com/technology-showcase/pcie-device-disaggregation/
https://www.fungible.com/technology-showcase/pcie-device-disaggregation/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/sev-tio-whitepaper.pdf
https://www.niap-ccevs.org/ pp/pp skpp hr v1.03.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/pcie-device-security-enhancements.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/pcie-device-security-enhancements.pdf

[37] S. Checkoway and H. Shacham, “Iago attacks: why the
system call api is a bad untrusted rpc interface,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 1,
pp- 253-264,2013.

[38] Nvidia, “Nvidia multi-instance gpu user guide :: Nvidia
tesla documentation,” https://docs.nvidia.com/datacenter/
tesla/mig-user-guide/.

[39] D. Kaplan, J. Powell, and T. Woller, “AMD memory
encryption,” White paper, 2016.

[40] Intel, “Runtime encryption of memory with

intel® total memory encryption multi-key,”

https://www.intel.com/content/dam/www/central-
libraries/us/en/documents/2022-10/intel-total-memory-
encryption-multi-key-whitepaper.pdf.

AMD, “Amd instinct mi250x accelerator,”

https://www.amd.com/en/products/server-accelerators/

instinct-mi250x, 2022.

D. Foley, “Nvlink, pascal and stacked

memory: Feeding the appetite for big data,”

https://developer.nvidia.com/blog/nvlink-pascal-stacked-

memory-feeding-appetite-big-data/, 2014.

S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, “Common

counters: Compressed encryption counters for secure gpu

memory,” in [IEEE HPCA, 2021.

S. Yuan, A. W. B. Yudha, Y. Solihin, and H. Zhou,

“Analyzing secure memory architecture for gpus,” in [EEE

ISPASS, 2021.

[45] S.Lee,J.Kim,S. Na, J. Park, and J. Huh, “TNPU: Support-
ing trusted execution with tree-less integrity protection for
neural processing unit,” in IEEE HPCA, 2022.

[46] STMicroelectronics, “STMicroelectronics and Prove &
Run Provide Scalable Security Platform for IoT Devices,”
2017.

[47] ——, “STM32L4 series of ultra-low-power MCUs,” 2022.

[48] B.Nisarga and E. Peeters, “System-level tamper protection

using msp mcus,” Texas Instruments, 2016.

Southco, “RACK LEVEL SECURITY,” 2022.

I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh,

“Heterogeneous isolated execution for commodity gpus,”

in Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming

Languages and Operating Systems, 2019, pp. 455-468.

K. Vaswani, S. Volos, C. Fournet, A. N. Diaz, K. Gordon,

B. Vembu, S. Webster, D. Chisnall, S. Kulkarni,

G. Cunningham et al., “Confidential computing within

an {Al} accelerator,” in 2023 USENIX Annual Technical

Conference (USENIX ATC 23),2023, pp. 501-518.

S. Sridhara, A. Bertschi, B. Schliiter, M. Kuhne, F. Aliberti,

and S. Shinde, “ACAI: Protecting accelerator execution

with arm confidential computing architecture,” in 33rd

USENIX Security Symposium (USENIX Security 24),

2024, pp. 3423-3440.

C. Wang, F. Zhang, Y. Deng, K. Leach, J. Cao, Z. Ning,

S. Yan, and Z. He, “Cage: Complementing arm cca with

gpu extensions.” ISOC, 2024.

[54] STMicroelectronics, “Stsafe-al10: Authentication, state-

[41]

[42]

[43]

[44]

[49]
[50]

[51]

[52]

[53]

14

of-the-art security for peripherals and iot devices,” https:
//[www .st.com/en/secure-mcus/stsafe-al10.html, 2022.
Zilinx, “Vitis_ libraries/security at main
xilinx/vitis_ libraries github,” https://github.com/
Xilinx/Vitis __ Libraries/tree/main/security, 2022.
C.-S.Bres, A. O. Wiberg, B.-P. Kuo, J. M. Chavez-Boggio,
C. F. Marki, N. Alic, and S. Radic, “Single-gate 320-
to-8x 40 gb/s demultiplexing,” in National Fiber Optic
Engineers Conference. Optical Society of America,
2009, p. PDPA4.

CAMELab, “Simplessd - simplessd 2.0.12 documenta-
tion,” https://docs.simplessd.org/en/v2.0.12/index.html.
Huawei, “Atlas 200 dk ai developer kit — huawei global,”
https://e.huawei.com/in/products/cloud-computing-dc/
atlas/atlas-200, 2022.

Suse, “Amd secure encrypted virtualization (amd-sev)
guide,” https://documentation.suse.com/sles/15-SP1/
html/SLES-amd-sev/index.html, 2022.

R. Hat, “Chapter 12. Configuring AMD SEV Compute
nodes to provide memory encryption for instances,” 2022.
J. Axboe, “fio flexible i/o tester rev. 3.32.”
https://fio.readthedocs.io/en/latest/fio doc.html, 2017.
brianfrankcooper, “Github brianfrankcoop-
er/ycsb: Yahoo! cloud serving benchmark,”
https://github.com/brianfrankcooper/YCSB, 2022.

H. Krawczyk, “Sigma: The’sign-and-mac’approach to au-
thenticated diffie-hellman and its use in the ike-protocols.”
in Crypto, vol. 2729. Springer, 2003, pp. 400-425.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale:
elastic resource scaling for multi-tenant cloud systems,” in
SoCC,2011.

R. Yu, G. Xue, V. T. Kilari, and X. Zhang, “Network
function virtualization in the multi-tenant cloud,” IEEE
Network, vol. 29, no. 3, pp. 42-47, 2015.

T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C.J. Rossbach,
and E. Witchel, “Telekine: Secure computing with cloud
GPUs,” in NSDI, 2020.

L. K. Ng, S. S. Chow, A. P. Woo, D. P. Wong, and
Y. Zhao, “Goten: Gpu-outsourcing trusted execution of
neural network training,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2021.

O.Kwon, Y. Kim, J. Huh, and H. Yoon, ‘“Zerokernel: Secure
context-isolated execution on commodity gpus,” IEEE
Transactions on Dependable and Secure Computing,
vol. 18, no. 4, pp. 1974-1988, 2019.

S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A.-R.
Sadeghi, and N. Mentens, “Trusted configuration in cloud
fpgas,” in IEEE FCCM, 2021.

H. Oh, K. Nam, S. Jeon, Y. Cho, and Y. Paek, “Meetgo: A
trusted execution environment for remote applications on
fpga,” IEEE Access, vol. 9, pp. 51313-51 324, 2021.
W.Ren, J. Pan, and D. Chen, “Accguard: Secure and trusted
computation on remote fpga accelerators,” in 2021 IEEE
International Symposium on Smart Electronic Systems
(iSES). 1IEEE, 2021, pp. 378-383.

[72] W. Ren, W. Kozlowski, S. Koteshwara, M. Ye, H. Franke,

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.amd.com/en/products/server-accelerators/instinct-mi250x
https://www.amd.com/en/products/server-accelerators/instinct-mi250x
https://developer.nvidia.com/blog/nvlink-pascal-stacked-memory-feeding-appetite-big-data/
https://developer.nvidia.com/blog/nvlink-pascal-stacked-memory-feeding-appetite-big-data/
https://www.st.com/content/st_com/en/about/media-center/press-item.html/t3928.html
https://www.st.com/content/st_com/en/about/media-center/press-item.html/t3928.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
https://files.southco.com/static/documents/brochures/201701-BR-Rack-Level-Security-EN.pdf
https://www.st.com/en/secure-mcus/stsafe-a110.html
https://www.st.com/en/secure-mcus/stsafe-a110.html
https://github.com/Xilinx/Vitis_Libraries/tree/main/security
https://github.com/Xilinx/Vitis_Libraries/tree/main/security
https://docs.simplessd.org/en/v2.0.12/index.html
https://e.huawei.com/in/products/cloud-computing-dc/atlas/atlas-200
https://e.huawei.com/in/products/cloud-computing-dc/atlas/atlas-200
https://documentation.suse.com/sles/15-SP1/html/SLES-amd-sev/index.html
https://documentation.suse.com/sles/15-SP1/html/SLES-amd-sev/index.html
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-amd-sev-compute-nodes-to-provide-memory-encryption-for-instances_amd-sev
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-amd-sev-compute-nodes-to-provide-memory-encryption-for-instances_amd-sev
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/brianfrankcooper/YCSB

and D. Chen, “Accshield: a new trusted execution
environment with machine-learning accelerators,” in
ACM/IEEE Design Automation Conference,?2023.

[73] A. Lépez-Alt, E. Tromer, and V. Vaikuntanathan, “On-
the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption,” in Proceedings of the
forty-fourth annual ACM symposium on Theory of
computing,2012, pp. 1219-1234.

[74] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast
privacy-preserving machine learning on the gpu,” in 2021
IEEE Symposium on Security and Privacy (SP). 1EEE,
2021, pp. 1021-1038.

[75] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright,
“Privacy-preserving machine learning as a service.” PETS,
2018.

[76] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa, “Oblivious
Multi-Party machine learning on trusted processors,” in
USENIX Security, 2016.

[77] K. Xia, Y. Luo, X. Xu, and S. Wei, “Sgx-fpga: Trusted
execution environment for cpu-fpga heterogeneous
architecture,” in ACM/IEEE DAC, 2021.

[78] P. Nasahl, R. Schilling, M. Werner, and S. Mangard,
“Hector-v: A heterogeneous CPU architecture for a secure
RISC-V execution environment,” in ACM Asia CCS,2021.

[79] A. Koshiba, F. Gust, J. Pritzi, A. Vahldiek-Oberwagner,
N. Santos, and P. Bhatotia, “Trusted heterogeneous
disaggregated architectures,” in Proceedings of the 14th
ACM SIGOPS Asia-Pacific Workshop on Systems, 2023,
pp- 72-79.

[80] A. AWS, “Amazon ec2 fl instances,” https:
/laws.amazon.com/ec2/instance-types/f1/, 2022.

[81] Microsoft, “Deploy ml models to field-programmable
gate arrays (fpgas) with azure machine learning,”
https://learn.microsoft.com/en-us/azure/machine-
learning/v1/how-to-deploy-fpga-web-service, 2022.

[82] Huawei, “Modelarts - train ml models || huawei cloud,”
https://www.huaweicloud.com/intl/en-us/product/
modelarts.html, 2022.

[83] Google, “Ai and machine learning products || google
cloud,” https://cloud.google.com/products/ai, 2022.

[84] Intel, “Confidential VMs on Intel CPUs: Your new
intelligent defense ,” 2023.

[85] PCI-SIG, “PCI Express 6.0 Specification.”

[86] ——, “Integrity and Data Encryption (IDE) ECN Deep
Dive,” accessed 2023-05-04.

[87] Intel, “Intel tdx connect architecture specification,”
https://www.intel.com/content/www/us/en/content-
details/773614/intel-tdx-connect-architecture-
specification.html, 2023.

[88] A. Holdings, “Introducing arm confidential compute
architecture guide version 3.0,” https://developer.arm.com/
documentation/den0125/0300/?1ang=en, 2023.

[89] sifive, “RISC-V Security Architecture Introduction,” 2019.

[90] C. Consortium, “Compute Express Link® (CXL®):
Link-level Integrity and Data Encryption (CXL IDE) .”

15

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://learn.microsoft.com/en-us/azure/machine-learning/v1/how-to-deploy-fpga-web-service
https://learn.microsoft.com/en-us/azure/machine-learning/v1/how-to-deploy-fpga-web-service
https://www.huaweicloud.com/intl/en-us/product/modelarts.html
https://www.huaweicloud.com/intl/en-us/product/modelarts.html
https://cloud.google.com/products/ai
https://github.com/umd-memsys/DRAMsim3/blob/master/tests/example.trace
https://github.com/umd-memsys/DRAMsim3/blob/master/tests/example.trace
https://pcisig.com/pci-express-6.0-specification
https://pcisig.com/sites/default/files/files/PCIe%20Security%20Webinar_Aug%202020_PDF.pdf
https://pcisig.com/sites/default/files/files/PCIe%20Security%20Webinar_Aug%202020_PDF.pdf
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://developer.arm.com/documentation/den0125/0300/?lang=en
https://developer.arm.com/documentation/den0125/0300/?lang=en
https://sifive-china.oss-cn-zhangjiakou.aliyuncs.com/%E8%A5%BF%E5%AE%89%E7%8F%A0%E6%B5%B7%E6%9D%AD%E5%B7%9E%E5%90%88%E8%82%A5ppt/04%20hujin%20RISC-V%20Security%20Architecture%20Introduction_4%20City.pdf
https://computeexpresslink.org/webinars/compute-express-link-cxl-link-level-integrity-and-data-encryption-cxl-ide-333/
https://computeexpresslink.org/webinars/compute-express-link-cxl-link-level-integrity-and-data-encryption-cxl-ide-333/

	Introduction
	Problem Statement
	Setting
	Trusted Execution Environments (TEEs)
	Threat Model
	Gap in Prior Works

	Distributed TEE Design Space Exploration
	Potential Designs
	S0: Centralized SC connected to nodes managing devices
	S1: Centralized SC connected to nodes with no TEE
	S2: Semi-centralized SC with TEEs
	S3: Decentralized TEEs
	S4: Hybrid Decentralized TEEs

	Observations
	Overview of Hybrid Architecture ĩn Data Centers
	Challenges
	Insights

	Security Controller (SC)
	SC Architecture
	Enforcing TEE Primitives
	Setting up and reserving non-TEE nodes
	Runtime integrity violation
	Communication: TEE and Non-TEE node
	Communication: Non-TEE nodes behind SC
	Communication: Non-TEE nodes behind different SCs
	Releasing node
	Connecting TEE nodes

	Remote Attestation
	Enclave Manifest
	Attestation Process

	Resource Allocation Strategy

	Security Analysis
	Attack from Untrusted CSP-MP
	Malicious Configurations
	Attacks via Non-TEE Nodes
	Physical Attacker
	Security against Side-channels

	Implementation and Evaluation
	Security Controller (SC) implementation
	SSD TEE Node
	Cloud-Centric Workload Design
	SC's Effect on Workloads

	Related Work
	Conclusion

