
DEVLORE: Extending Arm CCA to Integrated Devices
A Journey Beyond Memory to Interrupt Isolation

Andrin Bertschi* Supraja Sridhara* Friederike Groschupp Mark Kuhne
Benedict Schlüter Clément Thorens Nicolas Dutly Srdjan Capkun Shweta Shinde

ETH Zurich

Abstract
Arm Confidential Computing Architecture (CCA) executes
sensitive computation in an abstraction called realm VMs and
protects it from the hypervisor, host OS, and other co-resident
VMs. However, CCA does not allow integrated devices on
the platform to access realm VMs and doing so requires in-
trusive changes to software and is simply not possible to
achieve securely for some devices. In this paper, we present
DEVLORE which allows realm VMs to directly access inte-
grated peripherals. DEVLORE memory isolation re-purposes
CCA hardware primitives (granule protection and stage-two
page tables), while our interrupt isolation adapts a delegate-
but-check strategy. Our choice of offloading interrupt manage-
ment to the hypervisor but adding correctness checks in the
trusted software allows DEVLORE to preserve compatibility
and performance. We evaluate DEVLORE on Arm FVP to
demonstrate 5 diverse peripherals attached to realm VMs.

1 Introduction

Arm-based platforms are deployed in consumer electronic
devices (e.g., phones, cars, laptops) and the cloud. Appli-
cations running on these platforms typically use integrated
devices (e.g., display, sensors, integrated GPUs) to perform
their sensitive tasks such as on-device inference or authen-
tication. Cloud providers offer integrated accelerators con-
nected to Arm CPUs. For example, Nvidia superchips (e.g.,
Grace-Hopper, Grace-Blackwell) integrate Armv9-A proces-
sors with state-of-the-art GPUs [4] to support AI-models in
the cloud. In both settings, it is important to safeguard users
sensitive computation on the platform from untrusted soft-
ware (e.g., hypervisor executing on personal devices) and
untrusted providers (e.g., cloud management).

Confidential computing allows users to execute their com-
putation in isolation from privileged untrusted software. Arm
has announced a new hardware extension called realm man-
agement extensions (RME) to natively support confidential

* These authors contributed equally to this work.

computing. Similar to Intel TDX and AMD SEV-SNP, Arm
Confidential Computing Architecture (CCA) provides a vir-
tual machine (VM) abstraction. CCA isolates VMs from
each other and from untrusted hypervisors and host OSes.
To achieve this, CCA introduces two new worlds called the
realm and the root world. The root world has the highest priv-
ilege and exclusively executes the trusted firmware including
the monitor. The realm world houses the confidential VMs
and a thin Realm Management Monitor (RMM). These new
worlds are in addition to two existing worlds: the normal/non-
secure world that is reserved for the host hypervisor and the
secure world which houses TrustZone-based trusted apps.

CCA isolates CPU accesses to memory based on worlds by
using a hardware-based mechanism called granule protection
tables (GPTs). For each physical address, the GPT tracks the
world it is mapped to. Then, the hardware stops: any world
from accessing the root world; the normal and secure world
from accessing the realm and the root world. Lastly, the RMM
software uses page tables to isolate realm VMs from each
other. This architecture summarized in Figure 2(a) reduces the
TCB by keeping the hypervisor and management logic in the
normal world. The VMs only have to trust the firmware which
includes the monitor and the RMM. All non-CPU components
including integrated devices are mapped to the normal world
to ensure that they cannot access the realm or root memory.

Arm CCA-based VMs executing in the realm world might
need access to integrated devices on both consumer devices
and the cloud. For example, to use a keypad or biometric sen-
sor to perform authentication or to use an integrated GPU for
computation on sensitive data in the cloud. However, CCA
does not allow any devices access to VM memory. One ap-
proach to allow VMs to access devices is to create a shared
encrypted memory that is maintained in the normal world.
However, this is an undesirable solution due to unavailability
of encryption engines in integrated devices, required changes
to device drivers, and the performance overhead due to the
necessary memory copies.

To this end, we present DEVLORE—a CCA-based design
that allows VMs to directly access integrated devices. DE-

1

ar
X

iv
:2

40
8.

05
83

5v
1

 [
cs

.C
R

]
 1

1
A

ug
 2

02
4

VLORE allows devices and VMs to directly access each others
memory but ensures that such access does not compromise
the VM’s confidentiality or integrity. DEVLORE extends the
use of GPTs to attach devices to VMs. It then uses a second
GPT to stop the untrusted software outside the VM from ac-
cessing the device. However, this approach is not sufficient
for all devices and incurs large overheads if applied blindly.
Device accesses can range from purely memory-mapped IO,
to full-fledged DMA, to fine-grained memory-mapped IO and
context-based views of the device state. DEVLORE caters to
device-specific needs by using the two-GPT approach only
when necessary and augments it with DMA-protection for
devices that need it. Our two-GPT memory isolation ensures
security while preserving performance.

Next, we show that device memory isolation is not enough
to guarantee confidential computing. An attacker can abuse
interrupts (e.g., inject, reorder, drop) to corrupt benign device
drivers executing in VMs. To this end, we propose a novel in-
terrupt isolation design that isolates both physical and virtual
interrupts without any software changes to existing OSes and
drivers. Our insight is to delegate the interrupt management
and delivery to the untrusted hypervisor while the trusted
software checks if the hypervisor misbehaves. This approach
minimizes software changes, but may incur large overheads if
applied blindly to all devices on the platform. To address this,
DEVLORE allows configurable isolation for cases where in-
terrupt isolation may not be necessary, just memory isolation
is sufficient (e.g., device uses polling instead of interrupts).
DEVLORE adapts a suitable isolation based on each interrupt
ID registered by the device attached to the VM.

We prototype DEVLORE on a CCA-enabled emulator pro-
vided by Arm to demonstrate feasibility, correctness, and
compatibility with hardware specification and software stack.
DEVLORE changes to the hypervisor, firmware, and guest
kernel are minimal (5K LoC) whereas it does not require any
changes to device drivers. We demonstrate DEVLORE with
5 devices of varying complexity and isolation requirements:
keyboard, button, LED, mouse, and SMMU test engine. We
further benchmark DEVLORE with synthetic workloads to
stress test our memory and interrupt isolation. For these stress
workloads with frequent interrupts DEVLORE reports over-
heads of 25%. Further, for workloads that stress both frequent
DMA and interrupts, DEVLORE reports overheads of 50%
Contributions. The paper makes three main contributions:

• Integrated Devices. DEVLORE is the first work that al-
lows Arm CCA-based VMs to directly access integrated
devices while maintaining CCA guarantees as well as
existing TCB, performance, and functionality.

• Memory & Interrupt Isolation. Our novel approach em-
ploys two-GPT memory isolation and delegated interrupt
isolation.

• Diverse Device Support. DEVLORE isolates diverse set

of devices connected to realm VMs without any modifi-
cations to applications or device drivers.

2 Background

We first introduce Arm CCA and then explain the memory
and interrupt behavior of integrated devices.

2.1 Arm CCA

Prior to Armv9-A, Arm supported executing computation
in two worlds (normal and secure) using TrustZone. From
Armv9-A, Arm ISA optionally supports Realm Management
Extensions (RME) for CCA. It extends the previous two
worlds (normal and secure) with two new worlds (realm and
root). CCA guarantees that the realm world is not accessible
to the normal world. Similarly, the root world is isolated from
all other world software. To enforce this isolation, the RME
introduces hardware units called Granule Protection Checks
(GPCs) where a granule is the smallest addressable chunk of
memory. The GPCs filter all memory accesses by looking up
a Granule Protection Table (GPT). The GPT maps each gran-
ule’s physical address (PA) to a world, or physical address
space (PAS) of that granule. The GPT is stored in the root
world and only accessible and programmed by monitor which
runs in the root world.

Apart from the worlds, the Arm architecture enables privi-
lege levels called exception levels (EL) from EL0 to EL2
in the normal, realm, and secure world. EL3 is the most
privileged exception level and only executes the root world
software (i.e., the trusted firmware with the monitor). CCA
enables running realm VMs (in EL0 and EL1) that are not
accessible to the normal world. The untrusted hypervisor
executes in the normal world and manages VM resources
and scheduling. CCA deploys a Realm Management Monitor
(RMM) to execute in the realm world at EL2. All communica-
tion from the realm VMs to the hypervisor are routed through
the RMM. Concretely, the RMM offers a Realm Service Inter-
face (RSI) to the realm VMs which they use to send requests
to the RMM and the hypervisor.

While the GPCs isolate the different worlds from each
other, they are insufficient to isolate mutually-distrusting
realm VMs. To isolate the realm VMs, the RMM programs
their stage-2 translation tables (S2 tables) and enforces an
exclusive mapping check i.e., a given physical address in the
realm world is only mapped to one realm VM in the S2 tables.
To program the S2 tables, the RMM delegates the task of
setup and management to the hypervisor, and only performs
the exclusive mapping check before programming the S2
tables.

2

Interconnect

MMU

Core 1

SMMU GPC GPC

DMA
device

PAS filter

MMIO-only
device

PAS filter
Memory

MMIO-only
device

DMA
device

GIC

GIC config.

MMIO DRAM

PA

Hypervisor

Core 1

vGIC config.

vGIC reg15

createsmapped

physical
interrupt

vGIC reg1
…

virtual
interrupt

...

programs

maintains

(a) (b)

Figure 1: (a) Types of devices and CCA’s GPC and PAS
filters for memory protection (b) Arm’s interrupt architecture
(with and without CCA) where the hypervisor maintains the
GIC configuration, creates and maintains vGIC configuration
for VMs, and programs vGIC system registers. The GIC fires
physical interrupts and virtual interrupts programmed in the
vGIC system registers.

2.2 Integrated Devices

Integrated devices maintain their state in device registers and
optionally read/write the main memory. Hypervisors can vir-
tualize devices either by managing them on behalf of the
VMs (e.g., virtio) or by enabling direct device passthrough
to the VMs. With hypervisor managed virtualized devices,
the hypervisor traps on all communication between the VM
and device, and perform them on the VM’s behalf. With this
approach, the hypervisor is trusted to perform the device op-
erations correctly. In Arm CCA, the hypervisor is not trusted.
Therefore, in DEVLORE we use direct device passthrough.
Device Trees and MMIO. Applications communicate and
control integrated devices using MMIO and DMA operations.
For MMIO to an integrated device, the platform defines the
physical addresses that should be used for the device. These
physical addresses are fixed and stored as part of the firmware
image in a device tree. This device tree defines the device IDs,
their interrupts, and the physical addresses used for MMIO.
The monitor reads this device tree during platform boot and
propagates it to the hypervisor. When the hypervisor launches
VMs with devices, the hypervisor provides a virtualized de-
vice tree. The VM’s device tree contains the device IDs,
the corresponding interrupts, and guest physical addresses
(GPAs). The hypervisor ensures that the guest physical ad-
dresses in the device tree are mapped to the correct physical
addresses in the S2 tables. With CCA, the hypervisor controls
the host device tree. Each VM has its own device tree which is
a part of its attestation report. Typically, devices have distinct
MMIO physical addresses.

Devices can directly access host memory using DMA op-
erations. On the Arm platform, DMA-capable devices are
behind an SMMU (equivalent to an IOMMU on Intel/AMD).
To isolate the devices to specific VMs, the hypervisor pro-

grams the SMMU S2 tables. With CCA, the SMMU has a
GPC that the monitor programs to ensure that devices cannot
access realm memory. Unlike the SMMU S2 tables configu-
ration, the SMMU’s GPC configuration is in the root world
and not accessible to the hypervisor.

2.3 Interrupts

Next, we explain interrupt management on Arm, both for
non-CCA and CCA platforms.
GIC. On Arm platforms, the Generic Interrupt Controller
(GIC) delivers interrupts to the cores. Each peripheral has
a hardware line to the GIC to assert an interrupt. When an
interrupt is asserted, the GIC sends it to a core based on the
interrupt’s configuration. Interrupts can be enabled or dis-
abled, routed to any or a specific core, and assigned a priority.
The GIC uses this information whenever necessary, e.g., to
order multiple pending interrupts. On Arm platforms with vir-
tualization support, the hypervisor manages the GIC, which
exposes a memory-mapped configuration address range. The
hypervisor can use the GIC configuration space to selectively
enable/disable interrupts, set up interrupt affinities, and pro-
gram interrupt priorities.
vGIC. Each VM on the Arm platform needs a local view of
the GIC. To support this, the Arm platform provides virtual
GICs (vGIC) that the hypervisor sets up for the VMs. VMs
can then configure and manage their vGICs and receive in-
terrupts while being oblivious that they are not interacting
with the physical GIC. The vGIC configuration space is virtu-
alized by the hypervisor and is not backed by hardware i.e.,
the hypervisor creates the view of the configuration space
for each VM. Virtual interrupt injection is performed by the
hypervisor by programming hardware-backed vGIC system
registers. Concretely, when the hypervisor programs the vGIC
system registers with interrupt numbers, the hardware fires
these interrupts on VM entry.

To virtualize the configuration space, the hypervisor traps
when the VM tries to access the vGIC through MMIO (e.g.,
for changes to interrupt affinity, setting up priorities). Cur-
rently, when a physical interrupt for the VM arrives at the
GIC, the GIC cannot directly inject it into the VM. If this was
allowed, it would break the virtualization abstraction that the
vGIC provides. Instead, the hypervisor virtualizes this inter-
rupt and uses the vGIC to send the interrupt to the VM. To do
this, the hypervisor traps on physical interrupts to VM cores,
programs the vGIC system registers with the corresponding
interrupt, and resumes the VM. For performance, there are
many (n) system registers that the hypervisor can program
to fire n distinct pending interrupts at once. The number of
system registers (n) is specific to the GIC implementation. If
there are several pending interrupts, the hypervisor programs
the vGIC with the highest priority interrupts. On VM entry,
the vGIC fires the interrupts programmed by the hypervisor.
Acknowledging Interrupts. A benign hypervisor typically

3

acknowledges physical interrupts as soon as it receives an
interrupt and then injects a virtual interrupt to the VM i.e.,
before servicing the interrupt. This is to ensure progress in the
system—if the acknowledgment is delayed for a particular
interrupt id, all further interrupt invocations for this id will
be blocked. On the hand, the benign hypervisor should not
use the above greedy acknowledgment approach for special
type of interrupts. Specifically, certain devices constantly re-
trigger the same interrupt ID if an interrupt is acknowledged
too early i.e., the handler in the VM has not performed its
operations. For example, the keyboard writes pending char-
ters to its own memory and sends an interrupt. However, if
the physical interrupt is acknowledged before the VM’s han-
dler consumes the characters the keyboard thinks that the
interrupt was dropped and resends it. If the gap between the
hypervisor’s greedy acknowledgment and the VM’s end of
interrupt handler is large, the interrupts keep arriving at the
GIC, who injects them into the unblocked cores one after
the other. This is referred to as an interrupt storm [30]. The
hypervisor knows the type of interrupt from the device tree
and uses this information to decide if it is safe to perform
greedy acknowledgments for cases where it is safe. If it is not
safe, the hypervisor first services the interrupt and injects a
virtual interrupts to the VM. Then, the hypervisor waits for
the virtual interrupt acknowledgment from the VM and only
then performs a physical interrupt acknowledgment.

CCA Interrupt Support. CCA expects the hypervisor to
virtualize and manage interrupts for the realm VMs. How-
ever, directly switching to the hypervisor when a realm VM’s
core receives a physical interrupt can leak the realm VM’s
state. So CCA ensures that all physical interrupts to cores
executing realm VMs trap to the RMM. The RMM saves the
state of the realm VM, and then switches to the hypervisor to
virtualize the interrupt. For security, CCA does not allow the
hypervisor to directly program the vGIC’s system registers
and the RMM clears any values that the hypervisor might
have written to these registers before entering a realm VM.
Instead, to program the vGIC for the realm VMs, the hypervi-
sor invokes the RMM with the vGIC configuration. On each
RMM invocation, the hypervisor can program the vGIC to
send at most n distinct pending interrupts. In response, the
RMM checks if the vGIC configuration is valid according to
Arm’s GIC specification and programs the realm VM’s vGIC
system registers. Therefore, currently the RMM allows the
hypervisor to inject all interrupts to the realm VM.

3 Integrated Devices in Arm CCA

We outline the security challenges that arise when adding
CCA support for integrated devices.

3.1 Threat Model

We trust the platform and all of its components, including the
GIC. We assume that the hardware integration of the devices
on the platform conforms to the specification and is bug-free,
i.e., devices are only accessible through the specified address
ranges and can only assert their assigned interrupts. While
we trust the platform’s hardware integration, we do not trust
the firmware of all the devices in the platform. Instead, each
realm VM can choose which devices to trust and communi-
cate with. The monitor includes the firmware of these devices
in the VM’s attestation report. We assume a one-to-one map-
ping property between a device and the address range used to
access it (i.e., the MMIO range). While most devices satisfy
this property, we consider devices that do not (e.g., GPIO
configurations) as out of scope. We assume that all software
executing in the normal and secure worlds are untrusted. We
trust the CCA hardware, assume that all trusted CCA soft-
ware (i.e., the RMM and monitor) are implemented according
to CCA specifications, and assume mutual distrust between
realm VMs. Protecting against side-channels and microarchi-
tectural attacks is orthogonal to our work and we consider
them to be out of scope.

3.2 Memory Accesses

Applications that execute on Arm-based platforms need to use
various integrated devices (e.g., display, sensors, integrated
GPUs). Integrated devices can either rely purely on MMIO
reads and writes from the processors (e.g., sensors) or also
use DMA capabilities to access the DRAM (e.g., integrated
GPUs). Next, we explain the different types of devices and
the security challenges in connecting them to realm VMs.
MMIO-only Devices. Some devices (e.g., sensors, buttons,
LEDs) never directly access processor memory. Instead, appli-
cations control and communicate with these devices through
their memory-mapped space using MMIO operations. To en-
able this communication, these devices are mapped into the
processor’s physical address space. When the VM wants to
access the device, CCA’s protections for CPU cores is suffi-
cient to protect MMIO accesses. One can achieve this in two
steps. First, map the devices into realm memory addresses to
allow CCA’s realm VMs to connect to MMIO-only devices.
With this, CCA’s GPCs and S2 tables for the MMU are suffi-
cient to secure these devices. Concretely, the GPCs prevent
any normal world software (e.g., hypervisor) from writing to
the memory-mapped regions. This blocks all normal world
access to the device. Then, the RMM’s S2 tables ensures that
only one realm VM has valid translations to the memory-
mapped physical addresses. So, if another realm VM tries to
access this device, it leads to a translation fault blocking the
access. This ensures that only the realm VM that the device is
connected to can read/write to the device. Lastly, since these
devices never originate accesses to processor memory, the

4

lack of checks from device to memory is irrelevant.

Devices with Fine-Grained MMIO Access Control. Some
devices need fine-grained access control (e.g., to protect 32-bit
registers). For this, CCA introduces hardware changes to the
devices to implement device-specific protection checks in the
form of PAS filters which allow for this fine-grained access
control. With these PAS filters, all MMIO accesses from the
cores to the device can be filtered on the device eliminating the
need for GPCs. While the device’s PAS filters perform world-
level isolation, they cannot distinguish accesses from different
realm VMs. Therefore, the RMM’s S2 tables are necessary
to ensure that only one realm VM can access the device’s
MMIO pages. In addition to world level filtering, the devices
can use the PAS filters to expose different device views based
on the world of the access. For example, a GPS sensor with
PAS filters can create 2 views for the normal and realm world.
When the normal world reads the memory-mapped region it
sees 0 and when the realm world reads the memory-mapped
region it sees the GPS co-ordinates. Similarly, an LED with
PAS filters can allow the normal world to only read its value
while the realm world can read and write to the LED.

DMA Devices. On an Arm CCA platform, any accesses to
realm world memory by integrated devices are stopped by the
GPCs. This is because the CCA platform treats the transac-
tions originating from these devices as coming from normal
world. There is only one way to connect realm VMs with
these legacy devices: the hypervisor sets up a shared memory
region in the normal world which is accessible to both the
realm VMs and the devices. The devices read and write to
this shared memory region to perform DMA operations. This
shared memory region is accessible to the untrusted hyper-
visor that can compromise the confidentiality and integrity
of the data transferred to and from the device. One option
to secure this communication is for the realm VM and the
device to decrypt and encrypt all data that they read and write
to the shared memory region, often referred to as the bounce
buffer design. Concretely, to send data to the device via a
DMA write, the realm VM first encrypts the data and copies
it to normal world shared memory. Before using this data, the
device reads and decrypts the data. This method has two draw-
backs. First, the multiple encryption/decryption cycles and
data copies incur performance penalties [2]. Second, some
devices (e.g., sensors, buttons) may not have cryptographic
capabilities to perform encryption and decryption. Therefore,
the optimal approach to connecting devices realm VMs is to
allow them to directly read/write realm VM’s memory. But if
we allow these legacy devices direct access to realm memory,
they can be used by attackers to compromise CCA security.
Additionally, DMA-capable devices have memory-mapped
regions used by applications for configuration and control,
which means that MMIO operations for these devices also
need to be protected.

3.3 Device Interrupts Can Break Realm VMs
Devices are diverse and use different mechanisms to notify
processor-bound computation of events based on their needs
and capabilities. To better understand these notification mech-
anisms, we manually analyzed the open-source drivers of
popular integrated devices in the Linux kernel. Some devices
use only interrupts as the notification mechanism. With CCA,
the untrusted hypervisor manages the interrupts for the realm
VMs. Currently, CCA does not protect against the untrusted
hypervisor arbitrarily injecting interrupts. The hypervisor can
inject arbitrary interrupts to compromise the security of the
realm VM.
Counter. For example, the Linux kernel’s counter subsys-
tem implements an interrupt-driven counter. This counter can
use any interrupt source (e.g., temperature sensor, proximity
sensor) as an event source and increments a counter when it
receives an interrupt, as shown in the Listing 1.

Listing 1: Linux interrupt-driver counter
1 irqreturn_t interrupt_cnt_isr
2 (i n t irq, v o i d *dev_id){
3 s t r u c t counter_device *ctx = dev_id;
4 s t r u c t interrupt_cnt_priv *priv = counter_priv(ctr);
5 atomic_inc(&priv ->count);
6 counter_push_event(ctr,
7 COUNTER_EVENT_CHANGE_OF_STATE , 0);
8 r e t u r n IRQ_HANDLED;
9 }

This counter implementation can be used by user-space appli-
cations to be notified when the counter is incremented, e.g.,
when an event has occurred for a fixed number of times (Line
5). Assume that the interrupt source for this counter is con-
nected to a realm VM and this counter is used by a realm VM
application. The untrusted hypervisor can arbitrarily inject
interrupts, trigger this interrupt handler, and increment the
counter to trigger the realm VM application’s event condi-
tion eventually. Therefore, using arbitrary interrupt injection,
the hypervisor successfully tricks the VM into believing an
event occurred when, in reality, it did not, compromising the
integrity of its execution.
Wireless Device Boot-up. Qualcomm’s WCNSS chip is
used in a wide range of devices with Arm cores for wireless
communications and vulnerable to the untrusted hypervisor’s
interrupt injection attacks. Concretely, the WCNSS driver
used for verified firmware loading expects interrupts to indi-
cate when the device’s firmware is successfully loaded and
ready to use (see Listing 2) [3].

Listing 2: Ready interrupt handler in WCNSS driver
1 irqreturn_t wcnss_ready_interrupt
2 (i n t irq, v o i d *dev){
3 s t r u c t qcom_wcnss *wcnss = dev;
4 complete(&wcnss ->start_done);
5 r e t u r n IRQ_HANDLED;
6 }

If the hypervisor injects an interrupt to trigger this handler
before the device is ready, it tricks the driver into transitions

5

the device’s state to ready. This may lead to undesirable ef-
fects (e.g., VM may use an outdated or a corrupted WiFi
firmware image). With this attack, the hypervisor breaks the
driver execution without directly accessing the device, only
using interrupt injection.

3.4 Device Interrupts Need Memory Protec-
tion & More

In addition to pure interrupts, the devices can use two other
types of event notification mechanisms. These mechanisms
either only poll memory-mapped regions or use interrupts
in conjunction with memory-mapped region reads. In either
case, the interrupt handler reads or checks MMIO memory,
which, if left unprotected, makes the VM vulnerable to the
interrupt attacks from Section 3.3.
Polling. Some devices write to their own memory when
an event occurs. This device memory is mapped into the
processor’s physical address space. On the processor, the
device driver or a user-space process continuously reads
the memory-mapped region and waits for a specific value.
Devices drivers that expect the events to occur frequently
(e.g., network drivers built for high throughput) typically use
polling. In these cases, the core polling continuously does not
waste a lot of cycles. The hypervisor can compromise such
devices if the memory-mapped regions that the driver reads
is unprotected.
Interrupts Followed by Memory Read. For some devices,
the drivers execute an MMIO register read in the interrupt
handler to guard against spurious interrupts i.e., interrupts
that might have misfired due to an inconsistent state in the
device or the processor [5]. For example, the Arm Mali GPU
driver’s interrupt handler performs an MMIO read to check
the interrupt status. If the check fails, the handler does not
process the interrupt and simply returns.

Listing 3: Mali GPU interrupt handler
1 irqreturn_t kbase_job_irq_handler
2 (i n t irq, v o i d *data){
3 ...
4 s t r u c t kbase_device *kbdev = kbase_untag(data);
5 ...
6 u32 val = kbase_reg_read(kbdev ,
7 JOB_CONTROL_REG(JOB_IRQ_STATUS), NULL);
8 ...
9 i f (!val)

10 r e t u r n IRQ_NONE;
11 ...
12 kbase_job_done(kbdev , val);
13 r e t u r n IRQ_HANDLED;
14 }

In this case, the hypervisor can inject arbitrary interrupts to
trigger this handler. However, if the hypervisor cannot com-
promise this register, the injected interrupt cannot trick the
device driver into processing the interrupt, thus stopping the
attack.
Memory Isolation is Necessary but not Sufficient. If all
device drivers adopt one of the two mechanisms outlined

above and the MMIO regions are protected, it can thwart
malicious interrupt injection. This stops the hypervisor’s at-
tempts to compromise the realm VM security using interrupts.
However, this solution is infeasible in some cases, such as the
interrupt-driven counter, which purely depends on an interrupt
source and is device agnostic. Because of the device-agnostic
nature of this counter, reading from an MMIO space is not
possible, as different devices have different MMIO spaces and
behaviors. Therefore, supporting this interrupt-driven counter
in a realm VM such that the hypervisor cannot corrupt it, re-
quires architectural guarantees for interrupt authenticity. For
devices where such memory-mapped reads would be possi-
ble (e.g., Qualcomm’s WCNSS chip), doing so may incur
hardware changes to the device to write to the register. In
summary, any device that simply raises an interrupt when
an event occurs will need to be changed to also write to a
memory-mapped region, which can then be checked by the de-
vice driver. One approach is to update existing device drivers
where such a check is feasible, but this will incur significant
manual driver code patching. More importantly, it is still in-
sufficient for cases where the device simply does not have
hardware support to write to a register when it triggers an
interrupt. Another approach is to never allow VMs to access
devices directly and strictly use bounce buffers. Such strict
isolation that enforces exclusive memory access may seem
sufficient to protect against malicious interrupts. However,
depending on the granularity of encryption and integrity pro-
tection, the hypervisor can still trigger malicious DMAs to
trick the VM into initiating unintended memory transfers. The
only solution, then, is to disable all interrupts for all devices
connected to the VM, as the hypervisor can never inject any
interrupts, malicious or benign. However, this restriction not
only degrades the performance significantly by forcing all
devices to poll but also renders certain devices incompat-
ible with CCA irrespective of bounce buffers (e.g., purely
interrupt-based notification devices).

4 DEVLORE Overview

The challenges posed by the diversity of devices and attacks
in Section 3 motivates the need for a comprehensive memory
and interrupt isolation primitive.

4.1 Goal & Insight
DEVLORE’s core principle is to allow VMs direct access to
hardware resources (memory and interrupts). However, an
untrusted hypervisor can exploit this to compromise the VMs
(e.g., by tricking them into accessing untrusted memory or
handling malicious interrupts). To mitigate these threats, we
employ a “delegate-but-check" strategy where the hypervisor
manages resources but DEVLORE enforces strict monitoring.
DEVLORE uses two GPTs to allow the devices to directly ac-
cess realm memory, while stopping the hypervisor’s accesses.

6

Next, it uses S2 tables for both the cores (MMU) and devices
(SMMU) to stop mutually distrusting VMs and devices from
accessing each other’s memory. Section Section 4.2 provides
our detailed design for memory isolation.

Interrupt isolation turns out to be a more complex prob-
lem. Our seemingly simple principle is challenging to enforce
because DEVLORE needs to know the ground truth for en-
forcing checks for each of the interrupt management tasks:
configuration, delivery, acknowledgment. To this end, DE-
VLORE has to track which VM owns which devices to check
if the hypervisor can perform a interrupt management task
pertaining a device attacked to a VM. To isolate interrupt
configuration, DEVLORE traps the hypervisor’s actions and
checks if they are benign. Interrupt delivery has to be simi-
larly checked for authenticity. DEVLORE intercepts interrupts
from the GIC before they reach the hypervisor or the VM.
We maintain the ground truth provided by the GIC (which
device initiated which interrupt ID with what priority). DE-
VLORE then allows the hypervisor to continue and set up
the (potentially malicious) interrupt delivery. When the hy-
pervisor wants to inject an interrupt into a VM, DEVLORE
interposes this attempt and can reliably check whether this
injection is benign or malicious. Lastly, acknowledgment that
are necessary to signal that interrupt handling is complete
needs similar care. This is to ensure that the hypervisor does
not prematurely acknowledge the interrupt, tricking the GIC
into re-firing pending interrupts before the existing one is han-
dled completely by the VM. In summary, DEVLORE subjects
all hypervisor-level handling pertaining interrupts to rigorous
validation against the ground truth. We provide a high-level
overview of our interrupt design in Section 4.3 and the exact
enforcement in Section 5.2.

To support different devices without a performance penalty,
DEVLORE allows the realm VM to decide which protection
mechanisms to enable for the device. When a realm VM
requests attaching a device, it can selectively request enabling
the GPT-based memory views, SMMU protection, MMIO
space delegation, and turn the interrupt protection on/off.

4.2 Memory Isolation

DEVLORE allows VMs to configure the type of memory-
isolation to employ based on the device types. Table 2 shows
the overview of DEVLORE memory isolation, to ensures com-
patibility with a wide-array of integrated devices that can be
securely connected to realm VMs without incurring undue
performance penalties. CCA invariants guarantee that realm
VMs can only access their own memory using the RMM’s
S2 tables. Further, CCA invariants also ensure that no un-
trusted normal world software can access realm memory. In
DEVLORE, we extend these invariants to devices with a goal
to ensure that when the device or the VM initiate an access,
they observe the same memory behavior. Next, we explain
how DEVLORE leverages the flexibility of CCA’s GPCs and

EL0

EL1 device attach
Realm VM

RMM
RSI

Monitor

GIC, SMMU, 2-GPT config.

Trap protected interrupts

SMC

Hypervisor

RMI

SMC

EL2

EL3

Hypercall

VM
Realm world

Root world

Normal world

virt. interrupt
injection

Checks for: MMIO prot.,
DMA prot., interrupts prot.

int 44

44 44

Monitor

int
7

1

2 3
4 5

interrupted
exec. ctx.

virt. interrupt
injection

Hypervisor

virt. int
44 6

check virt. int

program virt. int

7

8

RMM
vm enter

Realm VM
9

GICint
44
10

(a) (b)

shared struct shared struct

Figure 2: DEVLORE Design. (a) Isolation of devices attached
to realm VMs (b) DEVLORE’s interrupt isolation flow where
a realm VM has turned on interrupt isolation for interrupt
44. 1. Interrupt 44 traps to monitor 2,3. monitor writes 44
to RMM and Hypervisor data structures. 4. monitor notifies
the hypervisor using an interrupt. 5. monitor returns to the
interrupted app. 6. Hypervisor sends virtual interrupt config-
uration to the RMM. 7. RMM checks the virtual interrupt
configuration 8. and programs the vGIC system registers 9.
and enters the Realm VM 10. On VM entry the GIC fires
interrupt 44 to the VM.

SMMU to achieve this goal for a wide-array of integrated
devices.
Allowing Legacy Devices to Access Realm. CCA does not
allow DMA-capable legacy devices to access realm memory
because it treats all DMA from these devices are originating
in the normal world. DEVLORE enables these legacy devices
to directly access the realm VM’s memory. Specifically, DE-
VLORE introduces two separate GPTs: one for cores (GPTc)
and one for devices (GPTd). The core GPT presents the realm
VM’s memory as belonging to the realm world to the cores.
On the other hand, the device GPT presents the same realm
VM memory as normal world to the devices. These two GPTs
ensure that both the cores and the devices can access the realm
VM’s memory. Because the core GPT marks this memory as
realm, untrusted normal world software (e.g., the hypervisor)
cannot access it according to CCA specifications. The moni-
tor programs all cores with GPTc, and the SMMU with GPTd
(see Figure 3). With this, the GPC in the SMMU allows these
devices to access the realm VM’s memory which is marked
as normal world in the GPTd .
DMA. While DEVLORE’s device GPT allows legacy devices
connected to realm VMs to directly access realm memory, it
does not stop an attacker controlled device from also gaining
this access using rogue DMA. Typically, the hypervisor uses
the SMMU to isolate devices from each other to prevent such
rogue DMAs. However, in our setting, the hypervisor is un-
trusted and therefore we cannot use a hypervisor-controlled
SMMU to prevent such attacks. Recent works solve this issue
by protecting the SMMU in the root world, using the monitor
to check all configurations that the hypervisor requests, and
leveraging SMMU’s S2 tables to isolate device accesses [36].
In DEVLORE, we use a similar mechanism and protect the

7

SMMU for DMA-capable devices. Even after SMMU con-
figuration is protected, if the VM and SMMU S2 tables are
not synchronized, an attacker can use it to mount split-view
attacks where the realm VM and device inadvertently access
different memory regions because of mismatched S2 table
mappings. To prevent this, DEVLORE copies the realm VM’s
S2 tables to the SMMU when the device is attached to a
realm VM. Furthermore, DEVLORE uses the RMM to ensure
that any update to the realm VM’s S2 tables also updates the
SMMU’s S2 tables using the RMM whenever the hypervisor
adds new memory to the realm VM.
MMIO. All MMIO accesses originate from the cores and
never from the devices. Unlike DMA, the device never ac-
cesses the MMIO space directly. So, DEVLORE does not need
to create different GPTs to support MMIO securely. Instead,
when a device is attached to a realm VM, DEVLORE ensures
that its MMIO region (as indicated by the realm VM) is dele-
gated to realm world and added to the realm VM’s memory.
This stops the untrusted hypervisor from accessing the device
through its memory-mapped space. CCA ensures that any
physical address in the realm world only belongs to one realm
VM or the RMM. This also applies to the MMIO region that
DEVLORE adds to the realm VM. This ensures that only one
realm VM can access the device’s MMIO space.

4.3 Interrupt Isolation Overview

The untrusted hypervisor can arbitrarily inject device inter-
rupts into the realm VMs leading to attacks described in Sec-
tion 3.3. The realm VM cannot detect such malicious interrupt
by itself because the hypervisor is responsible for realm VM
interrupt management. Concretely, when a device connected
to a realm VM sends a physical interrupt, the GIC notifies the
hypervisor. In response, the hypervisor injects the correspond-
ing virtual interrupt by programming the vGIC for the realm
VM. A malicious hypervisor can arbitrarily inject both physi-
cal and virtual interrupts by programming the GIC and vGIC
respectively. To protect against this threat, DEVLORE aims
to provide isolation for both physical and virtual interrupts,
such that the VM under attack exhibits the same behavior as
it would under a benign execution.

DEVLORE achieves this with two main observations. First,
if the hypervisor cannot access the GIC directly, it cannot
inject the device’s physical interrupts. With this, DEVLORE
ensures that all physical interrupts from the devices are au-
thentic. Second, with CCA, the hypervisor always calls into
the RMM to program the realm VM’s vGIC for virtual inter-
rupts. DEVLORE uses this for when the hypervisor requests
vGIC programming. In particular, DEVLORE can rely on the
RMM to match the virtual interrupt against the authenticated
physical interrupt. Next, we explain how DEVLORE uses
these insights to establish the authenticity of physical and
virtual interrupts (see Figure 2(b)).

Prevent Malicious GIC Writes. DEVLORE stops the hy-
pervisor from directly writing to the GIC memory, which is
necessary to change interrupt configurations (e.g., priorities)
or inject physical device interrupts Specifically, DEVLORE
marks GIC memory as root world and uses the monitor to
check any updates to the GIC’s configuration. This ensures
the authenticity of physical interrupts, i.e., any physical de-
vice interrupt that arrives at the cores is guaranteed to be from
the device itself.
Check All Virtual Interrupt Injections. When the hyper-
visor injects the virtual interrupts (i.e., requests vGIC pro-
gramming), DEVLORE needs to check if there was a corre-
sponding authentic physical interrupt. To perform this check,
DEVLORE first needs to store all the authentic physical de-
vice interrupts. To capture all device interrupts, it uses the
monitor to program the GIC such that the device interrupts
for which realm VMs have turned on interrupt isolation al-
ways trap to the monitor in EL3. When the monitor receives
the interrupt, DEVLORE stores the interrupt in an ordered
data structure in the RMM’s memory. When the hypervisor
requests to inject virtual interrupts, the RMM looks up the
data structure and performs checks before forwarding them
to the realm VM. This way, the RMM can distinguish be-
tween the case where the hypervisor is injecting a virtual
interrupt corresponding to an authentic physical interrupt ver-
sus a malicious virtual interrupt. Thus DEVLORE ensures that
the hypervisor cannot inject arbitrary virtual interrupts while
preserving ordering and interrupt priorities as we explain in
detail in Section 5.2. DEVLORE’s design ensures that even if
the interrupt management remains in the hypervisor, it cannot
break the confidentiality and integrity of the VMs.

5 Design

As in CCA, DEVLORE also spawns realm VMs by taking in
the VM image which includes the guest kernel, and device
tree. DEVLORE requires supplementary information as part
of the VM image: (i) for each pass-through device that needs
protection, the device tree has to state the type of memory and
interrupt isolation. Based on this, DEVLORE can infer which
regions of memory (DMA, MMIO) and interrupts (IDs, prior-
ities) need to be used for runtime enforcement. (ii) whether
a pass-through device can be hot-plugged, and if so the reset
function in the driver. The device-specific information is pro-
vided during VM bootup, is part of the attestation report, and
is used by the guest kernel during runtime as we explain next.

5.1 Device Lifecycle

DEVLORE allows realm VMs to request and relinquish de-
vices at any point during their operation. The realm VM re-
quests the RMM to attach a device by specifying the memory
and interrupt isolation that DEVLORE should enable. The

8

RMM then communicates with the hypervisor to attach the
device to the realm VM.
Device Attach. DEVLORE has to ensure device identity
(i.e., the correct device is attached) and that other untrusted
software cannot access it. Arm hardware platform defines
the physical addresses that integrated devices map to. The
software cannot modify these physical addresses, and the
monitor adds their measurement to the platform attestation
report. This also implies that accessing this physical address
always results in an access to the specific device. Thus the
physical addresses are tightly coupled with device identity and
access [18, 42]. Therefore, to attach a device to a realm VM,
DEVLORE expects the hypervisor first delegates the memory-
mapped physical address space to the realm world and adds
them to the realm VM’s memory using RMM APIs. While
adding these physical addresses to the realm VM, by default
the RMM ensures that no other realm VMs have access to
the physical addresses. These steps allow the realm VM to
access the device while guaranteeing that the hypervisor and
all other realm VMs cannot access it.
Reset and Attest the Device. When the hypervisor delegates
and adds device memory to the realm VM, the device might
still contain stale or uninitialized state. DEVLORE first soft
resets the device and then completes the device attach. Once
the device is attached, the realm VM invokes the RMM to
extend its attestation measurements over the newly attached
device memory. This records the initial state of the device
and its configuration which can be propagated to a remote
verifier using CCA mechanisms. The above procedure to
attach, reset, and attest the device is sufficient for realm VMs
to connect and communicate with MMIO-only devices. Next
we explain how DEVLORE handles realm VM requests for
DMA protection.
Allowing Devices to Access Realm Memory. CCA does not
allow legacy devices to directly access realm memory because
it treats all memory accesses from these devices as originating
from the normal world. Concretely, when a device initiates a
realm memory request, the GPC check sees that this request
originated in the normal world but is trying to access realm
memory. CCA does not allow normal world elements to ac-
cess realm memory, therefore this GPC will block this access.
In DEVLORE, to allow realm VMs to use DMA-capable de-
vices, we need to enable devices to access VM’s memory. But
in doing so, DEVLORE has to ensure that attacker-controlled
devices cannot bypass CCA security i.e., access VMs that
they are not attached to. To this end, DEVLORE creates two
different GPTs for the cores and devices.

DEVLORE uses the monitor during platform boot to ini-
tialize 2 identical GPTs: GPTc for the core, GPTd for the
device (see Figure 3). The monitor then programs the cores
with GPTc to filter memory accesses from the cores and the
SMMU with GPTd to filter accesses from the devices. During
runtime, when a DMA-capable device is added to a realm
VM, DEVLORE uses the monitor to update the device GPT

Root RL N S

Root RL N S

t0: At Boot

Root RL RL N S

Root RL N N S

t3: Dev detach 1,2

t1: Dev Attach 1 VM PAs
GPTc

GPTd

GPTc

GPTd

GPTn

GPTd

Root RL RL N S

Root RL N N S

t2: Dev Attach 2 VM PAs

GPTc

GPTd

Root RL RL N S

Root RL RL N S

VM PAs

Figure 3: DEVLORE’s two GPTs. t0: DEVLORE creates and
populates 2 GPTs at platform boot. t1: DEVLORE updates
GPTd when the first device is attached to the VM. t2: DE-
VLORE does not need to update the GPTs on subsequent
device attach. t3: When the devices are detached, DEVLORE
marks all realm VM memory back to Realm world.

to allow the device to access realm VM memory. Specifically,
during the device attach process, the monitor marks all mem-
ory belonging to the realm VM as normal world in GPTd .
With this change, the GPC in the SMMU will see the realm
VM’s memory as normal world memory. Therefore, when
the device accesses the realm VM’s memory, the GPC will
allow this access through. Further, if more memory is added
to the realm VM while the device is attached to it, DEVLORE
ensures that the GPTd is updated to ensure that the device
always has access to all of the realm VM’s memory.

DEVLORE does not require reprogramming the GPC for
the cores and the SMMU during runtime and does not incur
context switch overheads. Further, when GPTd is updated
during device attach, DEVLORE does not need to synchronize
core GPCs or flush their TLBs as changing GPTd only affects
the SMMU’s GPC.

Isolating DMA-capable Devices. With the 2 GPT setup, DE-
VLORE allows legacy DMA-capable devices to access realm
VM memory directly. However, without the right protections,
all devices can use this to access the realm VM memory to
compromise CCA security. Therefore, DEVLORE isolates
the devices to ensure that only devices that are attached to a
realm VM can access the VM’s memory. For this, DEVLORE
protects and uses the SMMU’s S2 tables as explained in Sec-
tion 4.2.

Device Detach. DEVLORE allows realm VMs to request a
device detach at any time. DEVLORE soft resets the device
and notifies the hypervisor that the device memory can be
undelegated. The hypervisor can then transition the device
memory to the normal world, whereby CCA ensures that the
memory is scrubbed and therefore does not leak any state. The
hypervisor may want to reclaim a device forcibly from a realm
VM. It can do so by terminating and destroying the realm VM
and transitioning all its resources back to the normal world.
During VM termination, DEVLORE ensures that any devices
attached to the VM are soft reset before they are handed back
to the hypervisor.

9

2

t0
t1
t2
t3

4 3 2

3
1
4

Benign sched. at t3

(a) Total Count

1 2 7 6 5
detected undetected

(b) Phy. Intr. Origination

7 6 5 1 3 2
detected undetected

(c) Ordering

1 3 2 4 1 3
detected undetected

VM scheduled: at t3 at t3

9t9

at t3

VM scheduled: at t3
4 1 3 4 3 2

detected OK

at t9
9 5 4
OK9 5 4

Benign sched. at t9

(d) Priorities

Figure 4: Device interrupts 1-9 are registered by a realm
VM for DEVLORE’s secure interrupt delivery. For simplicity,
interrupt number = interrupt priority and vGIC window size
n=3. (a) Counting: Detects if hypervisor injects too few in-
terrupts but not which interrupts are injected. (b) Tie virt. to
phys.: Detects if hypervisor injects fake interrupts but not if
the interrupts are reordered. (c) Ordering: Detects if hyper-
visor reordered interrupts but does not consider priority. (d)
Priority: Detects if hypervisor injects lower priority interrupts
when higher priority interrupts are pending. Scheduling: if
the hypervisor maliciously stalls the realm VM, the interrupt
injection behavior is equivalent to a possible benign schedul-
ing case.

5.2 Interrupt Isolation Design
The isolation of interrupts presents different challenges than
the isolation of device memory. Each device belongs to ex-
actly one VM, and we can rely on existing primitives such
as the GPCs and SMMU, which only need to be set up once.
The hardware enforces isolation without further software in-
tervention. In contrast, the GIC and its state is one resource
that needs to be shared between the hypervisor and all the
VMs. Further, DEVLORE not only needs to isolate the in-
terrupt configuration but also their delivery during runtime.
During device attach, realm VMs indicate to the RMM which
device interrupts should be protected. The RMM registers
these device interrupts for protection in the monitor. For these
registered device interrupts, DEVLORE guarantees interrupt
isolation (configuration, delivery, acknowledgment) under an
untrusted hypervisor who performs interrupt management.
Inject Physical Interrupts to Realm VM. A seemingly
straightforward way to achieve this guarantee would be to
ensure that the physical device interrupts are always routed
to the right realm VM core. This is possible in Arm, as the
GIC programs the interrupt routing affinity to the cores. How-
ever, by default the hypervisor manages the GIC and can
maliciously modify GIC configuration to route interrupts to
other cores. We consider a potential approach to circumvent
this threat. DEVLORE can move the GIC configuration in
the root world and protect it using the monitor checks high-
lighted in Section 4.3. To maintain hypervisor functionality,
DEVLORE introduces a GIC configuration interface for the
hypervisor to use (see Figure 5). With this, DEVLORE can

Hypervisor

normal world access root
world memory

h/w
GPF

configure
interrupt 100

decode faulting
instruction & call

monitor

GIC configuration GPF handler
smc_
gic_config

(addr,
size,r/w) Monitor

intr = get_intr(addr,size)
checks:

(addr,size) is in GIC config memory
intr is not protected

If checks pass:
perform r/w

gic config r/w gic config r/w
1

2

3

4

Figure 5: DEVLORE’s Hypervisor GIC config. flow. 1. Hy-
pervisor tries to configure GIC 2. This operation tries to ac-
cess root memory so the hardware raises a Granule Protection
Fault (GPF) 3. that the hypervisor traps on. In the trap handler,
reconstructs the faulting instruction and invokes the monitor
to perform the GIC config. operation 4. The monitor checks
the hypervisor’s request and then performs the GIC config.
operation.

ensure that the GIC always injects the registered physical
interrupts from the devices to the right realm core. But this
alone will not provide interrupt isolation guarantees to the
realm VM. With CCA, the realm cores always trap into the
RMM in EL2 when they receive a physical interrupt. On
trap, RMM alone cannot forward the physical interrupt to
the destination VM, only the hypervisor can do this. So the
RMM has to rely on the hypervisor to do the virtual injec-
tion. Therefore, simply routing all registered physical device
interrupts to the corresponding realm cores does not provide
DEVLORE’s interrupt security guarantee. Instead, DEVLORE
has to reason about both physical and virtual interrupt secu-
rity for the registered device interrupts. Next, we explain our
refined approach.
Authenticated Physical Interrupts. As explained in Sec-
tion 4.3, DEVLORE first establishes the authenticity of physi-
cal interrupts and uses it as the ground truth to check that the
hypervisor benignly virtualizes them for the realm VM. To
establish physical interrupt authenticity, DEVLORE protects
the GIC in the root world and traps all registered device inter-
rupts to the monitor in EL3. This allows the monitor to record
information about all registered physical interrupts that the
GIC fires. In DEVLORE, the monitor stores this information
in the RMM-accessible realm memory and notifies the hyper-
visor that this interrupt arrived by writing to normal world
hypervisor-accessible memory. Now, all that remains is to
ensure that DEVLORE checks the monitor’s physical interrupt
information to guarantee benign virtual interrupt delivery.
Delegate-but-check Virtual Interrupt Management. As
in CCA, the hypervisor is still responsible for interrupt man-
agement for the realm VMs in DEVLORE. While it would
be possible to implement virtual interrupt management in
the RMM directly, DEVLORE opts for CCA’s design philoso-
phy of delegate-but-check and shows that it is possible to do
this securely for virtual interrupts. Therefore, the hypervisor
should virtualize the device interrupts that the monitor trapped
for the realm VMs. To enable this, DEVLORE changes the

10

hypervisor to first check if there is any pending interrupt from
the monitor every time the hypervisor executes. If there are
pending interrupts, the hypervisor injects the corresponding
virtual interrupts into the realm VM. Concretely, according to
CCA specifications, the hypervisor sends the vGIC configu-
ration information to the RMM. With DEVLORE, the RMM
checks this information and then programs the vGIC that fires
the virtual interrupts to the realm VM.
Checking Virtual Interrupts. Next, we explain checks that
the RMM has to perform with the monitor’s cooperation.
We start with simple checks DEVLORE can do but will be
insufficient and iterate over them to build towards our full set
of checks. Figure 4 shows each set of checks with a running
example.
Check #1: Total Count. To begin with, assume that the RMM
performs a simple count-based check when the hypervisor
injects virtual interrupts into a realm VM. Concretely, the
RMM uses the physical interrupt information that the monitor
stores to compute the total number of interrupts that should
be injected for each realm VM. Subsequently, when the hy-
pervisor injects the virtual interrupts to the VM, the RMM
decrements the count of pending interrupts for that realm
VM. This solution prevents the hypervisor from injecting too
many or too few interrupts (see Figure 4(a)). However, this
checking method fails to prevent attacks where the hypervisor
maliciously injects a virtual interrupt that the device had never
sent.
Check #2: Origination from a Physical Interrupt. To stop
the hypervisor from arbitrarily injecting virtual interrupts, the
RMM should tie the authenticity of the physical interrupts to
the virtual interrupts. For this, the RMM requires the monitor
to write the registered physical interrupt numbers that arrive
to a list in realm memory. Then, when the hypervisor injects
the virtual interrupt, the RMM ensures that for each virtual
interrupt programmed into the vGIC there is a corresponding
entry in the monitor’s list, and only then forwards the virtual
interrupt. In CCA, when the hypervisor injects the virtual
interrupt via the RMM, it can send n (where n depends on the
GIC implementation) distinct interrupts to the vGIC (see Sec-
tion 2.2). So, for each virtual interrupt injection request, the
RMM checks that all of the interrupts in the request are au-
thentic. Tying the virtual interrupt to physical interrupts stops
the hypervisor from arbitrarily injecting other interrupts but
cannot ensure interrupt ordering (see Figure 4(b)).
Check #3: Ordering. DEVLORE needs to store an ordered
list of physical interrupts when they arrive at the monitor to
guarantee that the hypervisor cannot reorder them. Then, the
RMM can use this ordered list to check the virtual interrupts
that the hypervisor wants to inject. We observe that because
the hypervisor can inject n distinct interrupts at once to the
realm VM, DEVLORE does not need to guarantee ordering
for these n distinct interrupts. If the RMM programs the vGIC
with n distinct interrupts, when entering the realm VM, the
hypervisor will fill all n at the same time to the realm VM.

11 1 1pending int.
t0

1 1 1 1 1 4 5 1 1
t1 t2 t3

virt. intr.
hyp. op. schedule schedule schedule schedule

1 1 5 4 1

11 1 1 1 1 1 1 1 4 5

virt. intr.
hyp. op. schedule stall stall schedule

1 5 4 1

pending int.

Benign

Benign
1 1 1 1 4 5

11 1 1 1 1 1 1 1 4 5

virt. intr.
hyp. op. schedule stall stall schedule

1 5 4 1

pending int. 1 1 1 1 4 5
Malicious

Figure 6: Any malicious scheduling is always equivalent to
some benign scheduling that the VM expects

Therefore, the RMM uses the monitor’s ordered list to check
ordering with a window size of n. This prevents the hypervisor
from reordering the interrupts that are outside this window, as
shown in Figure 4(c). However, this is insufficient to achieve
DEVLORE’s interrupt isolation. During benign operation, the
hypervisor injects virtual interrupts based on the priority of all
the pending physical interrupts. Therefore, using time-based
ordering is not sufficient to preserve the priority properties.
Check #4: Priorities. To check virtual interrupt priorities,
DEVLORE requires the realm VM to assign priorities to its
registered device interrupts during device attach. The RMM
uses this information to create per-VM ordered priority lists of
interrupts and uses it to check the virtual interrupt injections
from the hypervisor (see Figure 4(d)). This check ensures
that the hypervisor always injects the highest priority pend-
ing interrupts. We conclude that this check is sufficient to
achieve DEVLORE’s guarantee that the interrupt behavior for
registered device interrupts will be equivalent to a benign
behavior (Figure 4(d)). This check ensures that the hypervi-
sor cannot inject or reorder interrupts in a way that a benign
VM execution does not expect. This guarantee is true even
if the hypervisor maliciously delays VM scheduling until
a high-priority interrupt arrives to effectively never inject a
lower priority interrupt. We observe that a benign hypervisor
never provides scheduling guarantees to a VM, and the VM
is expected to be able to handle any stalls or delays in its
scheduling (see Figure 6 and Figure 4(d)).

In summary, DEVLORE achieves interrupt isolation by en-
forcing the composition of checks #2, #3, and #4.
Acknowledging Interrupts. The DEVLORE checks ex-
plained above ensure isolated interrupt configuration and de-
livery. However, even in the presence of these checks, the
hypervisor still needs to acknowledge interrupts by writing
to the memory-mapped registers for functionality. DEVLORE
marks the memory-mapped register for acknowledgment as
root memory, thus revoking the hypervisor’s access and forc-
ing SMC calls. When the hypervisor tries to acknowledge any
interrupt via an SMC call, the monitor first checks if this inter-

11

rupt is isolated by DEVLORE. If not, the monitor performs the
acknowledgment. On the other hand, for interrupts that DE-
VLORE isolates, it has to ensure that they are acknowledged
appropriately for preserving the hypervisor’s functionality
(See Section Section 2.3). DEVLORE relies on the device tree
information and allows greedy acknowledgment or waits for
the VM to acknowledge the virtual interrupt and only then
allows a physical interrupt acknowledgment.

6 Security Analysis

We argue how DEVLORE achieves its security goals in the
presence of different adversaries.
Attach/Detach Device. The untrusted hypervisor can try to
map a device to a physical address space it controls before
attaching it to a realm VM. This is not possible as the physi-
cal addresses that the devices are mapped to is fixed for the
hardware platform and cannot be changed by software. Next,
a hypervisor can try to emulate devices or assign the wrong
device to a realm VM. DEVLORE checks the physical ad-
dresses that the hypervisor maps for the device using trusted
platform information in the monitor to detect and stop such
attacks. The hypervisor can also try to assign a device in a
state that compromises the realm VM when it is attached to it.
To stop such attacks, DEVLORE soft resets the device before
attaching it to the realm VM. Similarly, the hypervisor can
request DEVLORE to attach a device to a realm VM when
the VM doesn’t expect to have a device. DEVLORE does
not allow such requests and always expects the realm VM
to request a device attach. Finally, the hypervisor can try to
detach a device while a realm is using it to leak data from
the device. DEVLORE only allows the hypervisor to force
detach a device and soft resets and clears the device before
transferring control to the hypervisor.
Co-Resident Realm VMs. Attacker-controlled co-resident
realm VMs can try to directly access the device’s MMIO or
DMA memory. An attacker can also try to setup overlapping
realm memory regions with device memory of the victim
realm VM. DEVLORE adds all device memory to the realm
VM. When memory is added to a realm VM, CCA ensures
that this memory only belongs to one realm VM and isolates
it by programming the S2 tables in the RMM. Therefore,
other realm VMs will not have valid mappings for the device
memory and cannot access it. An attacker controlled realm
VM can try to inject interrupts to other realm VMs. This is
not possible as each realm VM can only program its local
vGIC and cannot access the vGIC of other VMs, because of
RMM’s S2 tables, or the GIC which is protected in the root
world.
SMMU Configuration and Attacker-controlled Devices.
The untrusted hypervisor can try to change SMMU’s S2 ta-
ble mappings to allow attacker-controlled devices access to
victim device memory. DEVLORE protects the SMMU config-
uration in the root world and checks and stops these attempts.

Attacker-controlled devices can try to access victim device
memory directly. These attempts are stopped by DEVLORE
using the SMMU’s S2 tables. Concretely, DEVLORE ensures
that the attacker-controlled device’s S2 tables will not have
valid mappings to access victim device memory. An attacker
can try to use a device to fake a victim device’s interrupts.
However, the hardware integration of the device on platform
is trusted and captured as part of CCA’s attestation report.
Because the interrupt lines for each device is unique and tied
to the hardware, software attackers cannot use devices to fake
other victim device interrupts.

GIC Configuration and Interrupt Injection Attacks. The
hypervisor can try to reprogram the GIC to not trap to the
monitor, compromising DEVLORE’s physical interrupt au-
thentication mechanisms. Similarly, the hypervisor can try
to reconfigure the interrupt priorities or acknowledge inter-
rupts directly in the GIC to compromise DEVLORE’s device
interrupt security guarantees. DEVLORE protects the GIC con-
figuration in root memory and checks all hypervisor accesses
to the configuration stopping such attempts. The hypervisor
can invoke the monitor’s GIC configuration interface (see Fig-
ure 5) with arbitrary addresses in the root world to read or
write from. DEVLORE stops such attempts by checking that
the address range that the hypervisor requests to operate on
using this interface is in the GIC configuration space. Besides
the memory-mapped GIC configuration, the Arm architecture
contains system registers for GIC configuration. The hypervi-
sor can try to use these registers to compromise DEVLORE’
interrupt isolation. However, DEVLORE traps all interrupts
it protects to EL3 by marking them as EL3 interrupts (i.e.,
Group 0 interrupts). According to the Arm architecture, the
hypervisor executing in EL2 cannot use the system registers
to configure these EL3 interrupts and therefore stops such
attacks.

The hypervisor can stall a realm VM’s scheduling (Fig-
ure 6) and wait for a high priority interrupt to arrive. It can
use this malicious scheduling to not inject lower priority in-
terrupts that had arrived earlier. However, we observe that
this interrupt injection behavior could also occur during a
VM’s execution with a benign hypervisor as hypervisors do
not provide scheduling guarantees for VMs. Therefore, this
malicious stalling of the realm VM is safe and does not lead
to an interrupt injection behavior that diverges from what
the VM normally expects. The hypervisor can try to inject
an interrupt multiple times (e.g., 16 times) with one vGIC
programming request. This is not possible, as the vGIC only
injects any given interrupt only once on every realm entry.
Therefore, while the vGIC can be programmed to fire 16 dis-
tinct interrupts at once it can never be used to fire the same
interrupt multiple times without reprogramming.

12

Table 1: Summary of changed LoC per component.

Component Modified Added Removed

TF-A 77 2242 8
RMM 25 1170 4
Kernel (Guest + Host) 38 3003 1388

7 Implementation

To prototype DEVLORE, we change Arm’s reference imple-
mentation of the trusted firmware-a (monitor) v2.8, the RMM
v0.2.0, the modified host and guest Linux kernel v6.2.0 with
CCA support (cca-full/rfc-v1) as shown in Table 1 and inter-
face changes as shown in Table 3. In the absence of CCA-
enabled hardware, we execute our DEVLORE prototype on
Arm’s Fixed Virtual Platform (FVP) with CCA support. The
FVP supports several integrated devices (e.g., keyboard, au-
dio) which we use to demonstrate DEVLORE.

7.1 Changes to Platform Boot

Like previous works, we create an additional GPT during
boot for GPTd , move the SMMU configuration and memory
to the root world [36, 42]. We also move GIC configuration
to the root world during boot. Further, we modify the boot
process of monitor and RMM to store device information for
the platform. During platform boot, when the monitor reads
the platform’s device tree from the hardware, we modify it to
copy the device tree into RMM memory. This device tree is
trusted and maps all devices to fixed physical address spaces
and enumerates the interrupts they use. During runtime, the
RMM looks up this device tree and uses it to check device
attach requests.

7.2 Device Passthrough

The Arm reference implementation uses KVM in the Linux
kernel and a virtual machine manager (VMM), kvmtool to
build and deploy realm VMs. Currently, CCA’s kvmtool only
supports hypervisor-managed virtio devices where all VM
device operations trap to the hypervisor. Kvmtool does not
support device passthrough for integrated devices where the
device is fully controlled by the VMs without KVM interfer-
ence. Without this passthrough, the VMs always trap to KVM
to perform device operations. We require this passthrough to
correctly attach devices to realm VMs such that they commu-
nicate with the devices directly without hypervisor interfer-
ence. For this, we first build a device passthrough mechanism
for normal world VMs which we use as our baseline. From
kvmtool, we invoke KVM to map the device physical memory
to the VM in its S2 tables. With this, the device can directly
access and control the device. Next, we build a framework in
kvmtool that uses KVM to trap on all physical device inter-

Table 2: DEVLORE allows users to configure the types of
memory protection based on the type of device.

Device Type GPC MMU S2 SMMU Views

MMIO-only ✓ ✓ ✗ ✗
MMIO-only with PAS ✗ ✓ ✗ ✗
Legacy DMA ✓ ✓ ✓ ✓

Table 3: DEVLORE new and existing API.
API Status Description
rsi_attach_dev New Request attach device to VM
rmi_dev_finalize New Hyp. added device memory to realm
rsi_detach_dev New Request detach device from VM
rmi_granule_delegate Existing update 2 GPTs
rmi_granule_undelegate Existing update 2 GPTs
rmi_data_create Existing update SMMU if devices attached to VM
rmi_data_destroy Existing update SMMU if devices attached to VM
smc_prot_int New mark interrupts as protected
smc_gic_config New R/W to GIC configuration
rsi_ack_int New acknowledge level-triggered interrupts

rupts and program the vGIC to inject them as virtual interrupts
into the VM. With this, the device can directly access and
control the device and receive interrupts from it.

The only thing left is for KVM to decide when to ac-
knowledge the interrupt i.e., perform the end-of-interrupt
operation. This operation depends on whether the device
interrupt is level-triggered or edge-triggered interrupts. For
level-triggered interrupts, we observe an interrupt storm from
the device if KVM does not synchronize the physical and
virtual interrupt acknowledgments. Concretely, if KVM ac-
knowledges the physical interrupt before the VM performs
the virtual interrupt acknowledgment, the device continuously
sends the physical interrupts to the host. To handle this case,
when a level-triggered interrupt arrives, we first disable it in
the GIC such that the GIC does not fire it again preventing the
interrupt storm. Then, we acknowledge the physical interrupt.
To determine when to re-enable the interrupt again, we use
KVM to check the vGIC state on every VM exit. We modify
KVM to use the vGIC state to re-enable any physical device
interrupts after the VM has acknowledged the corresponding
virtual interrupts. On the other hand, edge-triggered inter-
rupts do not need the acknowledgment synchronization. So,
KVM directly performs this operation before programming
the vGIC. Next, we use this passthrough mechanism to attach
the devices to realm VMs according to DEVLORE design.

7.3 Attach/Detach a Device

While attaching a device, the realm VM can choose which
device interrupts to isolate and if the device needs DMA
memory isolation. For this, we implement a new RSI call
(rsi_attach_dev) in the Linux kernel and the RMM. To at-
tach a device, we change the realm VM’s kernel to look up its
device tree and finds the ID, memory-mapped GPAs and the
interrupts for the device. It sends this information to the RMM
in the form of rsi_attach_dev. In the RMM, we implement

13

checks where the RMM looks up the device tree from the
monitor and matches it against the request from the device. If
the corresponding device ID does not exist in the RMM’s de-
vice tree or the interrupts don’t match, it returns an error to the
realm VM. If these checks pass, the RMM sends the request
to the hypervisor to delegate the device to realm memory. The
hypervisor uses existing RMM APIs to transition the device
memory to realm world (rmi_granule_delegate) and add
this memory to the realm VM (rmi_data_create).

Once the hypervisor has finished transitioning all device
memory, it invokes a new rmi_dev_finalize call. In re-
sponse, the RMM checks that all the device GPA to PA map-
pings the hypervisor installed for the VM are correct i.e., the
hypervisor has mapped the GPAs (indicated by the realm VM
in rsi_attach_dev) to the PAs in the RMM’s device tree.
If the VM requested interrupt isolation, the RMM checks its
device tree and ensures that these interrupts belong to the
device, and then invokes a new smc_prot_int in the monitor
to deploy DEVLORE’s protections for these interrupts (see
Section 7.4). If the checks pass, the RMM soft resets the de-
vice. Finally, if the device requested DMA memory isolation,
the RMM invokes the monitor to configure the GPTs and the
SMMU to allow the device access to realm memory. Con-
cretely, the RMM calls the monitor to mark the realm VM’s
memory as normal world in GPTd and create SMMU S2 ta-
ble mappings to all realm VM memory for the device. This
sets up all device memory and interrupts with the isolation
requested by the device.

We implement an RSI call (rsi_detach_dev) for the
realm VM to request device detach. When the VM requests
this, the RMM soft-resets the device, deregisters its isolated
interrupts, and destroys the SMMU S2 table entries. If this is
the last device attached to the VM, the RMM also changes
GPTd for the VM’s memory back to realm world. Finally, it
marks the device as reclaimable and informs the hypervisor to
reclaim the device. At this point, the hypervisor can use nor-
mal CCA mechanisms to reclaim the memory. Additionally,
we change the hypervisor to force a device detach by killing
the realm VM using normal CCA mechanisms to reclaim the
device.

7.4 Interrupt Isolation

DEVLORE isolates physical interrupts by moving the GIC
configuration to the root world, ascertains the authenticity of
virtual device interrupts, and implements a trap-and-emulate
mechanism to maintain hypervisor functionality.
DEVLORE’s Interrupt Configuration. To isolate phys-
ical interrupts, we move the GIC’s memory-mapped con-
figuration space to root. We implement an SMC interface
(smc_prot_int) for the RMM to invoke registering inter-
rupts for isolation with DEVLORE to ensure that they always
trap to EL3. To do this, in the monitor, we first configure the
GIC to trap all Group 0 interrupts to EL3. Then, we change

the monitor to program the GIC entry for the registered in-
terrupts as belonging to Group 0. This process ensures that
these interrupts always trap to EL3 (Step 1 in Figure 2(b)).
DEVLORE’s Interrupt Delivery. Further, we need to imple-
ment notification mechanisms to the RMM and hypervisor
when these registered interrupts trap to the monitor. For this,
we allocate a shared data-structure each with the RMM (in the
realm world) and hypervisor (in the normal world). Then, in
the monitor’s interrupt handler, we perform two atomic writes
with the interrupt number into these shared data-structures
(Steps 2,3). At this stage, we acknowledge the interrupt if it
is an edge-triggered physical interrupts as explained in Sec-
tion 7.2. We then notify the hypervisor from the monitor’s
interrupt handler by sending a software-generated interrupt
(SGI number 7) that a new physical interrupt for a realm ar-
rived (Step 4). Finally, we return to the software that was
interrupted which resumes execution as normal (Step 5).

In the hypervisor, we implement an interrupt handler for
software-generated interrupt number 7 that responds to the
monitor’s interrupt notification. In this handler, we check
the shared data-structure for pending interrupts and invoke
KVM to inject these pending interrupts into the realm VM
(Step 6). In the RMM, we implement checks for the virtual
interrupts that the hypervisor injects into the realm VMs (Step
7). For this, in the RMI handler, we first read all pending
interrupts from the monitor and pick the interrupts that are
from devices attached to the realm VM. Then, we implement
a queue weighted by the priority of the device interrupts that
the realm VM indicated during device attach. We check the
list of interrupts that the hypervisor requested to program
the vGIC with against our priority list (see Section 5). If the
checks pass, we program the vGIC and resume realm VM
execution (Step 8,9).
Interrupt Acknowledgment. We need to implement a mech-
anism to correctly acknowledge level-triggered interrupts
such that it does not lead to an interrupt storm. For this, we
introduce a new RSI call in the RMM (rsi_ack_int). Then,
we change the guest kernel to trap on acknowledgments for
level-triggered interrupts and invoke this RSI. The RMM then
invokes the monitor to acknowledge the corresponding phys-
ical interrupt. This guarantees that the physical interrupt is
acknowledged after the VM has finished handling and ac-
knowledging the virtual interrupt.
Trap-and-Emulate to Check Hypervisor’s GIC operations.
With DEVLORE, the hypervisor cannot access the GIC con-
figuration directly. To allow the hypervisor to program the
GIC, we build a trap-and-emulate mechanism (see Figure 5).
Concretely, when the hypervisor accesses the GIC’s configu-
ration space in the root world (Step 1), the hardware raises a
Granule Protection Fault (GPF) (Step 2). We modify the GPF
handlers in the hypervisor to check if the access was to the
GIC and invoke a new SMC (smc_gic_config) to the moni-
tor to perform the operation (Step 3). We implement checks
in the monitor to only allow the programming of interrupts

14

Table 4: Tested Device.
Device MMIO DMA IRQ Setup & Benchmark
Keyboard ✓ ✗ ✓ Run ambakmi keyboard driver, Type n keys
SMMU test ✓ ✓ ✓ DMA transfers from Rodinia benchmarks
LED ✓ ✗ ✗ Flash LED
Button ✓ ✗ ✗ Read button state
Mouse ✓ ✗ ✓ Run ambkmi mouse driver

that are not isolated in DEVLORE (Step 4).

8 Evaluation

We aim to evaluate DEVLORE to: (a) demonstrate that it can
support multiple integrated devices and (b) report the impact
of our memory and interrupt isolation.

8.1 Measurement Setups & Platform

Baselines & DEVLORE Modes. We implement two baseline
setups to compare the performance of DEVLORE against. Our
baselines run a normal world VM (Bn) and a realm VM (Br),
both with a passthrough-enabled hypervisor (Section 7) and
an unmodified RMM and monitor. Bn runs a vanilla VM that
is attached to device where all memory is in normal world.
Br runs a realm VM that has an attached device where all de-
vice memory is in the normal world and not protected. These
baselines allow us to compare the performance overheads of
executing a realm VM without DEVLORE protections. Then,
we measure DEVLORE with memory and interrupt isolation
(Dmi). For Dmi, we run a realm VM with device passthrough
and isolate the MMIO and DMA regions in realm memory.
We also turn on interrupt isolation for device interrupts. We
compare the performance of Dmi with Br to measure DE-
VLORE overheads. Then, to understand the costs of realm
execution we compare the overheads for Br compared to Bn.
This allows us to put into perspective the overheads of Dmi
over Bn.
Evaluation Platform. We perform our experiments on Arm
FVP_Base_RevC-2xAEMvA version 11.20_15_Linux64.
The FVP emulates Arm v9 cores with RME support. The
FVP is instruction-accurate i.e., it accurately mocks the in-
structions that the Arm cores execute. We run our experiments
on an x86 host with an AMD EPYC 9334 32-Core Processor
and 376 GB of RAM. We configure the FVP with 1 cluster of
4 cores and 3 GB RAM. We boot a realm VM with 1 VCPU
and 250 MB of RAM. We attach 5 different devices to the
realm VMs using DEVLORE’s protection. For each of the
devices, we write test workloads (see Table 4) that we use to
ensure the correctness and compatibility of DEVLORE. To
compare the performance of our different setups, we modify
FVP’s Model Trace Interface (MTI) to count the number of
instructions and events.

Table 5: Overview of Rodinia Configurations.

App Domain Tasks Problem Size

nn Dense linear algebra 1 42764
gaussian Dense linear algebra 3148 1575 × 1575
needle Dynamic programming 229 1840
pathfinder Dynamic programming 5 50000 × 100
bfs Graph traversal 2 1840
sradv1 Structured grid 102 502 × 458
hotspot Structured grid 5 512 × 512
backprop Unstructured grid 2 262144 × 16 × 1

8.2 Device Workloads

We execute two device representative workloads with each of
our measurement setups.

DMA Workload: SMMU Test Engine. To measure the over-
heads that DEVLORE with memory isolation adds, we run
the Rodinia Benchmark suite in the VMs [11]. It performs
different DMAs that are representative of a memory-bound
workload. Table 5 summarizes the configuration parameters.
On the FVP, the SMMU test engine is a device that is pro-
grammable and typically used to initiate test DMA accesses
to the host memory. To perform the DMA operations from a
device for the Rodinia benchmarks, we use the FVP’s SMMU
test engine. For this, we hook on the DMA calls from Ro-
dinia and trigger the corresponding DMA operation from the
SMMU test engine.

Interrupt Workload: Keyboard. We attach a keyboard to
the VMs in each of the measurement setups. The keyboard
does not perform DMA but sends frequent interrupts (one
interrupt for each key press) and therefore is an example of
an MMIO-only device that uses interrupt notification. We
use the keyboard to measure DEVLORE’s interrupt protection
overheads in Dmi. The FVP includes an X11 visualization
component that translates keyboard and mouse input on the
x86 host to an emulated PL050 PS/2 peripheral on the FVP.
To measure the overheads reliably we need to eliminate any
effects from typing speed changes during our measurements.
For this, we write an x86 helper application that uses X11/Xlib
library to control the keyboard input. For each key press, the
FVP generates a physical interrupt that arrives in each of our
setups, e.g. in the hypervisor for Bn and Br, and monitor for
Dmi. Then, the hypervisor injects the interrupt into the guest.
In our experiments, we use the instruction tracer to detect
when VM acknowledges the interrupt for a keypress and then
type the next character. This mechanism ensures that our
keyboard workload generates a high frequency of interrupts
and stresses DEVLORE’s interrupt isolation mechanisms. In
each of the setups we type a fixed string of characters (of
length 1000 and 10000) and stop the experiment after the VM
acknowledges all interrupts.

15

Table 6: Benchmarks with PS2 Keyboard. IRQ: # of injected device interrupts, World Switches: # World switches from Root,
Realm, or Normal world, Ovh: Overhead w.r.t. Br.

Experiment Events Interface calls (103) World switches (103) Runtime (103)

Keys Mode IRQ RMI RSI SMC Root Realm Normal Instrs Ovh

1000 Br 1000 2.2 0 2.2 4.5 2.2 2.2 58944 –
1000 Dmi 1000 1.8 0 2.8 5.7 2.8 2.8 74286 26%

10000 Br 10000 22.3 0 22.3 44.6 22.3 22.3 593707 –
10000 Dmi 10000 18.3 0 28.3 56.6 28.3 28.3 744183 25%

Table 7: Rodinia Benchmarks with SMMU test engine. DMA: # of DMA transfers. IRQ: # of injected device interrupts, World
Switches: # World switches from Root, Realm, or Normal world, Ovh: Overhead w.r.t. Br.

Experiment Events Interface calls (103) World switches (103) Runtime (103)

Benchmark Mode DMA IRQ RMI RSI SMC Root Realm Normal Instrs Ovh

bfs Br 12 12 158 12 158 316 158 158 5190 –
bfs Dmi 12 12 104 12 116 231 104 128 7036 36%

gaussian Br 3155 3155 7791 3155 7791 15581 7791 7791 255839 –
gaussian Dmi 3155 3155 7565 3155 10720 21439 7565 13875 354762 39%

nn Br 4 4 73 4 73 147 73 73 2200 –
nn Dmi 4 4 71 4 75 149 71 79 3107 41%

sradv1 Br 149 149 977 149 977 1954 977 977 22877 –
sradv1 Dmi 149 149 906 149 1055 2110 906 1204 30239 32%

needle Br 233 233 1007 233 1007 2015 1007 1007 57068 –
needle Dmi 233 233 942 233 1175 2349 942 1408 91241 60%

hotspot Br 9 9 95 9 95 190 95 95 4860 –
hotspot Dmi 9 9 88 9 97 193 88 106 7366 52%

pathfinder Br 9 9 165 9 165 329 165 165 14914 –
pathfinder Dmi 9 9 151 9 160 320 151 169 24482 64%

backprop Br 11 11 510 11 510 1020 510 510 52697 –
backprop Dmi 11 11 933 11 1098 2041 1087 955 93534 77%

Table 8: Platform Boot Instructions (103), Ovh: Overhead
w.r.t. Br.

Stage Br Dmi Ovh
BL1 291 291 0.00%
BL2 15246 15634 2.58%
RMM 75534 75538 0.01%
Kernel 112513 115444 2.61%

Total 203578 206907 1.64%

8.3 DEVLORE Performance
We evaluate DEVLORE in different settings to measure the
performance costs incurred by our changes.
Platform and Realm VM Boot. Table 8 shows DEVLORE
overheads during the different boot stages. In total, DEVLORE
adds 1.6% overhead to the platform boot process. 0.97%,
3.74E-4% and 0.49% of this overhead is because of DE-
VLORE’s GPT setup, SMMU configuration, and GIC con-
figuration changes respectively. This is a one-time cost per
platform boot and hence the high overhead can be acceptable.

For a realm VM boot, Dmi needs 5.31% and 1068.2% more
instructions compared to Br and Bn respectively. This is ex-
pected, as most of the overhead during realm VM boot is from
transitioning normal world memory to the realm world. Since
this is a one-time setup cost per VM, this overhead may also
be acceptable.

Device Attach. Attaching the keyboard incurs 186% over-
head for Dmi compared to Bn. The overhead includes GPT
updates, SMMU configuration, and GIC configuration up-
dates, as well as context switches to the hypervisor for vari-
ous operations. We observe that the realm VM only needs to
incur the cost of the two-GPT setup for the first device. If the
VM already has a device attached, DEVLORE only programs
the SMMU’s S2 tables for subsequent devices that the VM
requests.

Runtime overheads. Table 7 and Table 6 show an overview
of the runtime overheads that the keyboard and SMMU test
engine incur. During runtime, DEVLORE’s memory protec-
tion enables the devices to directly access realm memory and
once setup should not add significant overheads to devices

16

Figure 7: Runtime performance of Rodinia benchmarks with
SMMU test engine. Y-axis is the numbers of instructions in
log scale, X-axis is the benchmark.

Figure 8: Keyboard benchmark runtime performance. Y-axis
is the number of instructions in log scale, X-axis is the number
of keys typed.

during runtime. Unlike memory protection, DEVLORE’s in-
terrupt protection adds overheads to device runtime. With
DEVLORE’s memory and interrupt protection (in Dmi), the
keyboard workload is on average 26% slower and the SMMU
test engine workload is 50% slower compared to Br (see Fig-
ure 8 and Figure 7). If we compare Dmi with Bn, Dmi is on
average 153% and 112% slower for the keyboard and SMMU
test engine. We note that most of this overhead is because of
execution in the realm world as evidenced by Br being on
average 102% slower for the keyboard and 43% slower for
the SMMU test engine than Bn.

9 Related Work

We discuss the existing body of work on confidential comput-
ing support for device.

CCA. There are several recent works on Arm CCA [10,17,22,
27, 35, 36, 42, 46, 49]. Shelter isolates userspace applications
in the normal world using multiple GPTs with an aim to
remove the RMM and reduce the TCB in CCA [49]. Similarly,
Cage users several GPTs to isolate mutually distrusting GPU
computation [42]. Both Shelter and Cage reprogram GPCs in
the cores and SMMU during runtime incurring context switch
overheads because of TLB flushes. In contrast, DEVLORE
like Acai only uses two GPTs and does not need to reprogram
the GPCs during runtime [36]. Ongoing efforts to verify the
RMM and the CCA firmware [17, 27] can be extended to
include DEVLORE’s TCB.
Device Protection in Arm. Cage and Strongbox build sup-
port for CCA’s realm VMs and TrustZone trusted apps to
securely compute on integrated Arm GPUs—without trusting
the GPU driver and runtime to reduce the TCB [13, 42]. In
contrast, DEVLORE supports attaching a wide array of differ-
ent integrated devices to realm VMs and configuring features
(e.g., DMA protection, interrupt isolation) according to the de-
vice’s needs. TrustZone can be repurposed to enable protected
access to integrated devices [18,24–26,37,38,48]. DEVLORE
uses CCA for securely virtualizing the devices and passing
them through to the realm VMs without the hypervisor’s in-
tervention. Acai connects TEE-enabled PCIe accelerators to
realm VMs [36]. Unlike DEVLORE, Acai does not support
hotplugging accelerators and requires that the accelerator is
connected to the realm VM for its entire lifespan. Arm’s new
hardware extension for Device Assignment (RME-DA) al-
lows TEE-enabled PCIe accelerators to directly access realm
VM memory [1]. However, these solutions do not apply to
integrated devices. This is because CCA blocks all accesses
from integrated devices, even if they are TEE-enabled, to
realm memory. DEVLORE design can be used to specify an
RME-DA equivalent for integrated devices.
Integrated Device Protection in Other Architectures. On
RISC-V, Cure modifies the hardware to propagate access
control information on the bus [8] and Composite Enclaves
assumes platform is untrusted and requires attestation primi-
tives on the devices [34]. Unlike RISC-V, in CCA the Arm
platform is trusted so we don’t need these expensive hardware
changes or device attestation mechanisms. IOPMP and its
extensions, like GPTs in DEVLORE, allow trusted hardware
to create different views of memory for devices to allow/-
deny access [16, 21, 45]. Several prior works for Intel SGX
have explored solutions to perform trusted IO with SGX en-
claves [14, 15, 28, 29, 44]. This rich body of prior work high-
lights the need for trusted peripherals for different types of
computation. While these works considered trusted IO with
physical devices, DEVLORE also virtualizes these devices to
connect them to realm VMs with CCA.
Interrupt Attacks. The hypervisor or the host OS can inject
to mount side-channel attacks by exploiting unprotected timer
interrupts and page-faults [19, 31, 39–41, 43, 47]. Hypervisors
can fake CPU exceptions and system calls using interrupts

17

to arbitrarily trigger victim’s handlers [32, 33]. Similarly, Ex-
pRace exploits kernel race conditions by using malicious
interrupt injections [23]. While these works focus on inter-
rupts usually raised by the processor (e.g., page-faults, system
calls), DEVLORE investigates the problem maliciously in-
jected device interrupts.
Interrupt Isolation on Arm. For interrupt configuration,
DEVLORE protects the GIC by marking it as root. Our mon-
itor and RMM check all configurations and stop other soft-
ware from directly writing to the GIC to tamper the config-
uration or trigger arbitrary interrupts. Prior works on Trust-
Zone [13, 18, 24] and CCA [42] achieve this by entirely or
partially marking GIC configuration as secure world. How-
ever, in our threat model, we do not trust the secure world
which can directly program the GIC to maliciously fire inter-
rupts, so DEVLORE marks them as root. For interrupt delivery,
like prior works, DEVLORE marks interrupts as belonging to
Group 0 (i.e., secure world) to trap them in EL3 [13,18,24,42].
Unlike prior works, DEVLORE is the first work that addresses
the problem of securely virtualizing the physical interrupts
when injected into the realm VMs.
Interrupt Isolation on Intel TDX & AMD SEV-SNP. Prior
works protect user-space enclaves against malicious interrupts
that leak register state or side-channel information [9, 12]. In
contrast, DEVLORE isolates VM interrupts to ensure exe-
cution integrity for both processor and device bound com-
putation. Intel TDX and AMD SEV-SNP offer confidential
VMs (CVM) architectures and have considered the problem
of protecting interrupts to CVMs. Intel TDX deploys a trusted
TD-Module that like the RMM, checks all virtual interrupts
injected into the TDX VMs [20]. AMD SEV-SNP allows SEV-
SNP VMs to optionally use a paravisor in the VM to filter
interrupts from the hypervisor [6, 7]. Like CCA, these filters
can only allow or deny all device interrupts. TDX-Connect
and SEV-TIO allow devices direct access to CVM memory.
DEVLORE’s insights and design can be applied to these ar-
chitectures but requires a careful security analysis of other
assumptions.

10 Conclusion

We present DEVLORE—the first system that allows attaching
integrated peripherals to Arm CCA-based VMs. DEVLORE
uses a two-GPT design to allow devices to directly access
realm world memory but programs stage-two translation ta-
bles for MMU and SMMU to limit the memory accesses
to the owner VM and attached device. Our novel interrupt
isolation design allows the hypervisor to manage the GIC
but strictly monitors the interrupt life cycle (configuration,
delivery, acknowledgment) in the SM and the RMM. DE-
VLORE’s delegate-but-check strategy preserves compatibility
and performance for wide-range of devices.

References

[1] Arm® Realm Management Extension (RME) System
Architecture. https://developer.arm.com/docume
ntation/den0129/latest/, accessed 11.08.2024.

[2] Confidential Computing on NVIDIA H100 GPUs for
Secure and Trustworthy AI. https://developer.
nvidia.com/blog/confidential-computing-o
n-h100-gpus-for-secure-and-trustworthy-ai/,
accessed 11.08.2024.

[3] Linux WCNSS driver. https://github.com/torva
lds/linux/blob/master/drivers/remoteproc/q
com_wcnss.c, accessed 18.07.2024.

[4] Microsoft and NVIDIA partnership continues to deliver
on the promise of AI. https://azure.microsoft.co
m/en-us/blog/microsoft-and-nvidia-partner
ship-continues-to-deliver-on-the-promise-o
f-ai/, accessed 18.07.2024.

[5] Spurious interrupts. https://developer.arm.co
m/documentation/ihi0048/b/Introduction
/Terminology/Spurious-interrupts, accessed
18.07.2024.

[6] AMD. AMD SEV-SNP. https://www.amd.com/sy
stem/files/TechDocs/SEV-SNP-strengthening
-vm-isolation-with-integrity-protection-a
nd-more.pdf.

[7] AMD. Linux SVSM (Secure VM Service Module).
https://github.com/AMDESE/linux-svsm.

[8] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. Cure: A security ar-
chitecture with customizable and resilient enclaves. In
USENIX Security Symposium, pages 1073–1090, 2021.

[9] Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Gal-
letta, Pierpaolo Degano, Jan Tobias Mühlberg, and Frank
Piessens. Securing interruptible enclaved execution on
small microprocessors. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 43(3):1–77,
2021.

[10] Charly Castes and Andrew Baumann. Sharing is leaking:
blocking transient-execution attacks with core-gapped
confidential vms. 2024.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy Sheaffer, Sang-Ha Lee, and Kevin Skadron. Ro-
dinia: A benchmark suite for heterogeneous computing.
pages 44–54, 10 2009.

18

[12] Ruan De Clercq, Frank Piessens, Dries Schellekens, and
Ingrid Verbauwhede. Secure interrupts on low-end mi-
crocontrollers. In 2014 IEEE 25th International Confer-
ence on Application-Specific Systems, Architectures and
Processors, pages 147–152. IEEE, 2014.

[13] Yunjie Deng, Chenxu Wang, Shunchang Yu, Shiqing
Liu, Zhenyu Ning, Kevin Leach, Jin Li, Shoumeng Yan,
Zhengyu He, Jiannong Cao, et al. Strongbox: A gpu
tee on arm endpoints. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, pages 769–783, 2022.

[14] Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan
Capkun. Proximitee: Hardened sgx attestation by prox-
imity verification. In Proceedings of the Tenth ACM
Conference on Data and Application Security and Pri-
vacy, CODASPY ’20, page 5–16, New York, NY, USA,
2020. Association for Computing Machinery.

[15] Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum,
Peh Chang Wei Brandon, Dillon Franke, Forest Fraser,
Gaspar Garcia Jr., Eric Gong, Hung T. Nguyen, Taresh K.
Sethi, Vishal Subbiah, Michael Backes, Giancarlo Pelle-
grino, and Dan Boneh. Fidelius: Protecting user secrets
from compromised browsers. In IEEE Symposium on
Security and Privacy, 2019.

[16] Erhu Feng, Dahu Feng, Dong Du, Yubin Xia, Wenbin
Zheng, Siqi Zhao, and Haibo Chen. siopmp: Scalable
and efficient i/o protection for tees. In Proceedings of
the 29th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Volume 2, ASPLOS ’24, page 1061–1076,
New York, NY, USA, 2024. Association for Computing
Machinery.

[17] Anthony CJ Fox, Gareth Stockwell, Shale Xiong, Hanno
Becker, Dominic P Mulligan, Gustavo Petri, and Nathan
Chong. A verification methodology for the arm® confi-
dential computing architecture: From a secure specifica-
tion to safe implementations. Proceedings of the ACM
on Programming Languages, 7(OOPSLA1):376–405,
2023.

[18] Friederike Groschupp, Mark Kuhne, Moritz Schneider,
Ivan Puddu, Shweta Shinde, and Srdjan Capkun. It’s tee-
time: A new architecture bringing sovereignty to smart-
phones. arXiv preprint arXiv:2211.05206, 2022.

[19] Wenjian He, Wei Zhang, Sanjeev Das, and Yang Liu.
Sgxlinger: A new side-channel attack vector based on
interrupt latency against enclave execution. In 2018
IEEE 36th International Conference on Computer De-
sign (ICCD), pages 108–114. IEEE, 2018.

[20] Intel. Intel Trust Domain Extensions (Intel TDX). ht
tps://www.intel.com/content/www/us/en/deve
loper/articles/technical/intel-trust-domai
n-extensions.html.

[21] Shan-Chyun Ku. What’s in risc-v iopmp. RISC-V
Forum: Security, 2021.

[22] Mark Kuhne, Supraja Sridhara, Andrin Bertschi, Nicolas
Dutly, Srdjan Capkun, and Shweta Shinde. Aster: Fixing
the android tee ecosystem with arm cca. arXiv preprint
arXiv:2407.16694, 2024.

[23] Yoochan Lee, Changwoo Min, and Byoungyoung Lee.
ExpRace: Exploiting kernel races through raising inter-
rupts. In 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[24] Matthew Lentz, Rijurekha Sen, Peter Druschel, and
Bobby Bhattacharjee. Secloak: Arm trustzone-based
mobile peripheral control. In Proceedings of the 16th
Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys, 18, 2018.

[25] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long
Lu, Haibo Chen, Binyu Zang, and Haibing Guan. Vbut-
ton: Practical attestation of user-driven operations in
mobile apps. In Proceedings of the 16th Annual Inter-
national Conference on Mobile Systems, Applications,
and Services, MobiSys ’18, page 28–40, New York, NY,
USA, 2018. Association for Computing Machinery.

[26] Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia,
Binyu Zang, Cheng-Kang Chu, and Tieyan Li. Building
trusted path on untrusted device drivers for mobile de-
vices. In Proceedings of 5th Asia-Pacific Workshop on
Systems, APSys ’14, 2014.

[27] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. De-
sign and verification of the arm confidential compute
architecture. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), 2022.

[28] Hongliang Liang, Mingyu Li, Yixiu Chen, Lin Jiang,
Zhuosi Xie, and Tianqi Yang. Establishing trusted i/o
paths for sgx client systems with aurora. IEEE Transac-
tions on Information Forensics and Security, 15:1589–
1600, 2020.

[29] Hongliang Liang, Mingyu Li, Yixiu Chen, Lin Jiang,
Zhuosi Xie, and Tianqi Yang. Establishing trusted i/o
paths for sgx client systems with aurora. IEEE Transac-
tions on Information Forensics and Security, 15:1589–
1600, 2020.

[30] Tomball Paul Vu. Method and apparatus for controlling
interrupt storms, U.S. Patent 7,120,717 B2, Oct. 2006.

19

[31] Ivan Puddu, Moritz Schneider, Miro Haller, and Srd-
jan Capkun. Frontal attack: Leaking Control-Flow in
SGX via the CPU frontend. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[32] Benedict Schlüter, Supraja Sridhara, Andrin Bertschi,
and Shweta Shinde. WeSee: Using Malicious #VC
Interrupts to Break AMD SEV-SNP. In IEEE S&P,
2024.

[33] Benedict Schlüter, Supraja Sridhara, Mark Kuhne, An-
drin Bertschi, and Shweta Shinde. Heckler: Breaking
Confidential VMs with Malicious Interrupts. In USENIX
Security, 2024.

[34] Moritz Schneider, Aritra Dhar, Ivan Puddu, Kari Kos-
tiainen, and Srdjan Čapkun. Composite enclaves: To-
wards disaggregated trusted execution. IACR CHES,
2022.

[35] Sandra Siby, Sina Abdollahi, Mohammad Maheri, Mar-
ios Kogias, and Hamed Haddadi. Guarantee: Towards
attestable and private ml with cca. In Proceedings of
the 4th Workshop on Machine Learning and Systems,
EuroMLSys ’24, page 1–9, New York, NY, USA, 2024.
Association for Computing Machinery.

[36] Supraja Sridhara, Andrin Bertschi, Benedict Schlüter,
Mark Kuhne, Aliberti Aliberti, and Shweta Shinde. Acai:
Protecting Accelerator Execution with Arm Confidential
Computing Architecture . In USENIX Security, 2024.

[37] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. Trustotp:
Transforming smartphones into secure one-time pass-
word tokens. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pages 976–988, 2015.

[38] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining
Wang. Trustice: Hardware-assisted isolated computing
environments on mobile devices. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 367–378. IEEE, 2015.

[39] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Neme-
sis: Studying microarchitectural timing leaks in rudi-
mentary cpu interrupt logic. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018.

[40] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 1041–1056, 2017.

[41] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam
Batori, Bader AlBassam, Christina Garman, Daniel
Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom.
SoK: SGX.Fail: How stuff get eXposed. 2022.

[42] Chenxu Wang, Fengwei Zhang, Yunjie Deng, Kevin
Leach, Jiannong Cao, Zhenyu Ning, Shoumeng Yan,
and Zhengyu He. Cage: Complementing arm cca with
gpu extensions. In Network and Distributed System
Security (NDSS) Symposium, 2024.

[43] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
sgx. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2017.

[44] Samuel Weiser and Mario Werner. Sgxio: Generic
trusted i/o path for intel sgx. In Proceedings of the
Seventh ACM on Conference on Data and Application
Security and Privacy, pages 261–268, 2017.

[45] Nils Wistoff, Andreas Kuster, Michael Rogenmoser,
Robert Balas, Moritz Schneider, and Luca Benini. Pro-
tego: A low-overhead open-source i/o physical memory
protection unit for risc-v. In Proceedings of the 1st
Safety and Security in Heterogeneous Open System-on-
Chip Platforms Workshop (SSH-SoC 2023). SSH-SoC,
2023.

[46] Xiangyi Xu, Wenhao Wang, Yongzheng Wu, Chenyu
Wang, Huifeng Zhu, Haocheng Ma, Zhennan Min, Zix-
uan Pang, Rui Hou, and Yier Jin. virtcca: Virtualized
arm confidential compute architecture with trustzone.
arXiv preprint arXiv:2306.11011, 2023.

[47] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In IEEE S&P, 2015.

[48] Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin
Jiang, Priyank Thavai, and Wenliang Du. Truz-droid:
Integrating trustzone with mobile operating system. In
Proceedings of the 16th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
MobiSys 18, page 14–27, 2018.

[49] Yiming Zhang, Yuxin Hu, Zhenyu Ning, Fengwei
Zhang, Xiapu Luo, Haoyang Huang, Shoumeng Yan,
and Zhengyu He. SHELTER: Extending arm CCA
with isolation in user space. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 6257–6274,
Anaheim, CA, August 2023. USENIX Association.

20

